Corning’s R&D / Innovation Approach

October 17, 2011
American Institute of Chemical Engineers

Joseph A. Miller, Ph.D.
Executive Vice President
Chief Technology Officer
Corning Incorporated
Who We Are

- Founded: 1851
- R&D Lab Established: 1908
- Headquarters: Corning, NY
- Employees: ~26,000 globally
- Sales: ~$6.6 billion
- Sales (incl. pro rata JV sales): ~$11 billion
- RD&E @ 9% of sales $670 million

- Corning’s global operations:
 ~ 65% of revenues from outside North America
 More than 50% of our employees are outside the United States
Market Segments

<table>
<thead>
<tr>
<th>Display Technologies</th>
<th>Telecom</th>
<th>Environmental Technologies</th>
<th>Life Sciences</th>
<th>Specialty Materials</th>
<th>Other Products & Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD Glass Substrates</td>
<td>Optical Fiber & Cable</td>
<td>Emissions Control Products</td>
<td>Cell Culture & Bioprocess</td>
<td>Advanced Optics & Materials</td>
<td>Display Futures</td>
</tr>
<tr>
<td>LTPS-LCD Glass Substrates</td>
<td>Hardware & Equipment</td>
<td>Automotive</td>
<td>General Laboratory Products</td>
<td>Display Optics & Components</td>
<td>New Business Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diesel</td>
<td></td>
<td>Semiconductor Optics & Components</td>
<td>Drug Discovery Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stationary</td>
<td></td>
<td>Aerospace</td>
<td>Equity Companies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Astronomy</td>
<td>– Dow Corning Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optical Metrology</td>
<td>– Samsung Corning Precision Glass Company, Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ophthalmic</td>
<td>– Eurokera, S.N.C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Telecom Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specialty Glass</td>
<td></td>
</tr>
</tbody>
</table>
Corning is building from a rich technology history

- Formal R&D Lab Established: 1908
- 100 Years of Organized R&D: 2008
- R&D + MT&E Technical Workforce: 1975
- Centralized RD&E - % in Corning, NY: 90%
- RD&E @ ~9% of sales (~$8B in 2011): $692M
Economic Disruptions
Evolution of Strategy
Look where we started 9 years ago
Where have we come from?

- **We were in a bad place in 2002**
 - Revenues of $3B
 - NPAT loss of $400M
 - Negative cash flow of $700M
 - Cash of $2B
 - Debt of $4B
Corporate Strategy Framework has proven to be resilient yet adaptable to change…as has been the Technology Strategy.

We Need To Grow

Grow Through Global Innovation

We Also Need Stability

Provide Stability and Balance

Synergy

We Must Preserve Trust

Live the Values

Growth through Innovation:
Strong capabilities directed at new opportunities

Innovation Value:
A talented, collaborative, inclusive culture

Financial Stability:
Affordable RD&E investments balanced across innovation activities
Technology strategy has changed over 10 years as the world and Corning has changed

• Rebuilding from the crash
 • 2002
 – Cut RD&E spend by 50%
 – Streamlined global R&D
 – Centralized RD&E at SP
 – Major shift: Telecom to Glass/Ceramic materials

• Returning to growth by focusing on our “core”
 • 2005
 – Built strength in core capabilities
 – Focused on on-going business
 – Created a NBD capability

• Diversifying growth by exploiting adjacent markets
 • 2008
 – Weathered recession
 – Built new capabilities
 – Launched flat glass adjacencies
 – Delivered key technologies to existing businesses

• Accelerating growth by taking advantage of our capabilities
 • 2011
 – Growing diversity in where we play
 – Shorter product lifecycles
 – Continue to deliver against our base
 – Executing at lower cost
 – Bringing the power of our technology to customers

• 2014

Revenue
$ Billions

3.2

4.6

6.0

8.0

10.2

– Growing diversity in where we play
– Shorter product lifecycles
– Continue to deliver against our base
– Executing at lower cost
– Bringing the power of our technology to customers

CORNING Science & Technology
Corning Internal
Where have we come from?
We’ve delivered outstanding financial performance

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenues</th>
<th>NPAT</th>
<th>FCF</th>
<th>Cash</th>
<th>Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>$3B</td>
<td>($400M)</td>
<td>($700M)</td>
<td>$2B</td>
<td>$4B</td>
</tr>
<tr>
<td>2003</td>
<td>$2.1B</td>
<td>$3.3B</td>
<td>$2.8B</td>
<td>$6.4B</td>
<td>$2.3B</td>
</tr>
<tr>
<td>2009</td>
<td>$2.1B</td>
<td>$3.3B</td>
<td>$2.8B</td>
<td>$6.4B</td>
<td>$2.3B</td>
</tr>
<tr>
<td>2010</td>
<td>$3.3B</td>
<td>$6.6B</td>
<td>$2.8B</td>
<td>$6.4B</td>
<td>$2.3B</td>
</tr>
</tbody>
</table>

NPAT Ex Specials ($M)

- 2002: ($392)
- 2003: $138
- 2009: $2.1B
- 2010: $3.3B

Revenues 2002 2010
NPAT ($400M) $3.3B
FCF ($700M) $2.8B
Cash $2B $6.4B
Debt $4B $2.3B
Response to 2001
Created a robust set of capabilities, processes and presence

Differentiated set of capabilities in materials science and process technology

Innovation Recipe and Keystone Components

- Deep understanding of a specific technology
- Identification of customers, markets, and processes
- Innovation Processes
- Multi-R&D Focus
- Regional competence
- Differentiation: Low cost, high value development

Broad and Deep Core Competencies

- Materials Science
- Optical Physics
- Ceramic Science
- Chemical Engineering
- Chemistry
- Electrical Engineering
- Electronics
- Process Technology
- Research

Glass, Optical Physics Process Technology

Disciplined innovation processes

Corporate Innovation Governance (CTC + GEC)

- Created New Corporate Innovation Governance
- Reinforced Five Stage Innovation Process

Five Stage Innovation Process

1. Ideation:
 - Corporate Technology Council
 - Growth Execution Council
2. Execution:
 - Created the Need for Portfolio
 - Reinforced the Future Portfolio
 - CTO + Research & MD Leaders
 - CTO + CTO Staff
3. Roadmaps → Portfolio → Execution

State-of-Art facilities

Sullivan Park, Corning, NY

- Europe
- Silicon Valley
- Asia

Technology footholds in global innovation markets

- Palo Alto, California
- Fontainebleau, France
- New Delhi, India
- Shanghai, China
- St. Petersburg, Russia
- Shizuoka, Japan
- Taipei, Taiwan

Centralized RD&E Offers Proximity to Integrate Technologies Quickly
...and developed a collaborative innovation culture

Collaborative Culture, Strong Technical Talent, Experienced Leadership

- Focus on knowledge sharing, idea generation, and global teamwork
- Attract and retain the best talent in Materials Science and Engineering: Attrition Rate = 1%
- >500 years technology innovation experience in top 2 levels of CTO’s organization

Patent Board ranks Corning as #1 innovator in the Industrial Materials Segment

<table>
<thead>
<tr>
<th>Industrial Materials Scorecard</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Scorecard Companies</td>
<td>113</td>
<td>109</td>
</tr>
</tbody>
</table>

Corning Inc Y-o-Y Rank Change

- Patents Granted Rank: 1 1
- Technology Strength Rank: 1 1
- Science Strength Rank: 1 1

Solid stable of leading customers, partners and collaborators

Coveted University Relationships

- Verizon
- AT&T
- Volkswagen
- Pfizer
- Deutsche Telekom
- Sony
- Honda
- AstraZeneca
- Samsung
- Apple
- Saint-Gobain
- Dow Corning
- Johns Hopkins University
- Uppsala Universitet
- Rutgers University
- Imperial College London
- MIT
- University of Southern California
- China Academy of Sciences
- Clarkson University
Our Innovation Recipe and technical competencies have served us well

Innovation Recipe

Innovation Recipe Yields Keystone Components

- Deep understanding of a specific technology
- Identification of customers’ difficult systems problems

Demanding Requirements

- Material
- Process

Unique Keystone Component

A component that is a system enabler

Differentiated by:

- Uniqueness
- Intellectual Property
- Specialized Capital Investment

Broad and Deep Core Competencies

Core Capabilities

- Inorganic Materials and Processes
- Characterization Sciences
- Organic Materials and Processes
- Systems Engineering
- Biochemical Sciences
- Modeling and Simulation
- Optical Physics
- Network Integration and Connectivity Research
- Thin Films and Surface Sciences
- Semiconductor Materials and Processes
Innovation Portfolio Governance Process

Corporate Technology Council
- Create-the-Next Wave Portfolio
- Evaluate early stage opportunities
- CTO + Research & NBD Leaders
- Meets monthly or as needed

Growth Execution Council
- Invest-in-the-Future Portfolio
- Sort, pace, execute growth programs
- CEO, CTO + CTO Staff
- Meets monthly or as needed

Technology with the Board
Effective Technology Delivery to Current Businesses from RD&E

<table>
<thead>
<tr>
<th>Display</th>
<th>Diesel</th>
<th>Auto</th>
<th>Telecom</th>
<th>Specialty</th>
<th>Life Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LCD Substrates</td>
<td>• Light Duty Diesel Filters</td>
<td>• Next Gen Substrates 600/2 400/3</td>
<td>• FTTx – Fiber, Cable, H&E</td>
<td>• HPFS for KrF Sensor Products</td>
<td>• Epic® System Assays</td>
</tr>
<tr>
<td>• Poly-Silicon Substrates for LCD / OLEDs</td>
<td>• Heavy Duty Diesel</td>
<td>• Thin Wall / Ultra Thin Wall light-off</td>
<td>• ClearCurve - SM Ultra Low -loss Fiber</td>
<td>• Precision Optics</td>
<td>• Advanced Cell Growth Surfaces & Vessels</td>
</tr>
<tr>
<td>• Thin/Slim Substrates</td>
<td>• Stationary Emissions Diesel</td>
<td>• Next Gen Substrates 600/2 400/3</td>
<td>• Pretium® EDGE - Data Center</td>
<td>• Gorilla™ Glass</td>
<td>• Life Science Products</td>
</tr>
</tbody>
</table>

~1 - 2 New Products Each Year for Each Business
Response to 2009
Added A Third Leg

Innovation Pipeline

- **New Businesses**: 5 - 10 years
- **Adjacencies**: 2 - 4 years
- **On-going Businesses**: 1 - 3 years

Synergy → Tension

Forced the new leg into the middle

Massive redeployment of resources
We needed to balance our portfolio using existing technology assets

- Specialty glass is our core materials and process capability
- We have substantial glass sheet forming process technology and manufacturing assets to support the Display Technologies business
- We redeployed some of those assets to address adjacent market segments in Consumer Electronics with thin, strong, damage-resistant glasses
- Here’s an illustration of the adjacency concept
Glass Composition
Fusion Process
Chemical Strength
Finishing
Value-added Features

Flat Glass Core Competency

Corning Retained Science & Technology

Illustrative

Fusion process invented in 1964

Started with focus on windshields for GM in 1970
2011 Strategic Frame

• Corporate technology strategy has three legs
 – Support the ongoing businesses near term
 – Build an adjacency opportunities portfolio medium term
 – Maintain exploratory activities and new business development longer term

• Make room for significant shift to adjacencies
 – Resource the fastest growing segment – glass
 – Restructure New Business Development
 • Prune the New Business Development project portfolio
 • Direct some of those resources to adjacencies
 – Maintain exploratory research to create a pipeline of opportunities
2011 Innovation Portfolio

Near Term (60%)

Major Businesses
- Display
- Diesel
- FTTx & Next-Gen Data Center

Flat Glass Adjacencies
- Gorilla® Glass
 - Handhelds/IT Covers
 - Touch Screens
 - TV Covers
- Thin-Film Photovoltaics

1-3 years

Medium Term (25%)

- Advanced Life Sciences
- Advanced Wire/Wireless Optical Communications
- Advanced Consumer Electronics and Industrial Applications
- Energy & Environmental

2-4 years

Long Term (15%)

- Organic Semiconductors
- Thermoelectrics
- Advanced Batteries
- CO₂ Sorption
- Ceramic Adjacencies
- Optical Adjacencies

5-10 years
Gorilla® Glass Applications
Touch Devices

• “Projected capacitive” touch devices are changing the game
 – Multi-touch
 – More complex applications and gestures
 – Better optical performance

• Touch device growth accelerating
 – Handheld 20% CAGR
 – Notebook/netbook 60% CAGR

• Potential for sensor integration on cover glass
Gorilla® Glass - The Slate Effect

- Glass will play a significant role in this space
 - Thinner LCD glass
 - Thinner Touch sensor glass
 - Thinner, yet stronger cover glass will be required

- Weight and area increase 5 to 7x on slates vs. handheld devices

- System designers faced with significant challenges

- Gorilla a perfect fit for reliability
Glass Adjacency Innovation Results

- Gorilla® Glass is exceeding growth expectations
- Growing awareness of glass as a new design element
- More than 40 major brands using Gorilla® Glass
- Next generation technology delivering significant improvements in both performance, capabilities and product possibilities
- With a potential to achieve close to $1B revenues in 2012
Strategic Response Delivered Strong Technology Performance

- Technology leader in each of our market segments
- More than 50% of revenues over last three years from new products
- Strong profitability
- Full pipeline of opportunities
- IP strength
Innovation
What I’ve Learned
Dynamics of Innovation – Observations

• Innovation is more than a process

• Innovation is an interconnected system
 – Imbedded in culture
 – Linked to strategy
 – Supported by process
 – Directed by leaders

• Talented people enabled to do their best - a critical success factor

• Must go beyond today and look to New Markets / New Businesses
Principles / Philosophy – My Top 10

• Strive for balance

• Pursue multiple avenues to maximize value from R&D investment

• Know “who you are” and what your “recipe” is

• Select early stage projects based on broad criteria together with a large dose of experience

• Mistakes happen – don’t try to eliminate them
Principles / Philosophy – My Top 10

• Great leaps are very risky

• Effective change is evolutionary …requiring continuous evaluation and feedback processes

• R&D must be aligned with business strategy but have enough independence to balance today’s needs with the opportunities of the future

• Business silos achieve focus and intensity - their long term preservation leads to a steady decline in technology enrichment, breadth and connection

• Don’t forget the social aspects – people have to work well together
Other Important Considerations - I

• The number of ideas for a robust pipeline >>> number than most believe are necessary

• Idea generation must be global with multiple sources and connections

• An unstaffed bench of ideas and opportunities promotes greater realism in assessment of current projects

• Multi-disciplinary teams of competent, motivated people beat individual genius every time … more productive, moderate risk, and compress cycles

• Sufficient rate of new business creation requires both linear and non-linear innovation pipeline flow

• Technology, marketing, manufacturing in it from the start

You get the business where you got the business
More Important Considerations - II

- Balance the deep scientific competencies with deep engineering competencies – both are needed for success
 - Great outcomes from meshing the engineering mindset with the scientific mindset

- Inject advanced engineering into the early stages of the innovation process to create and adapt more effective process invention
 - Process invention has been equally important as material invention for Corning’s innovations
 - Corning embedded the advanced engineering group in the R&D center and hired PhD engineers in multiple engineering disciplines

- Reduce the learning cycles on process engineering with pilot scale laboratory operations
 - Goal: Every major manufacturing process platform in the R&D lab
More Important Considerations - III

• Modeling and simulation … and materials and process characterization are critical enablers for materials and process engineering success
 – Yield better fundamental understanding at all levels of the innovation process, create strong IP positions, and often lead to significant cost reduction

• Faster clockspeed innovation opportunities require more technology presence at the customer interface
 – Reduce the learning cycles and requirements iterations
 – Application development, applications engineering and product/process engineering are prominent roles at the customer interface

• Gross margin (GM) performance is really the name of the game
 – GM% is what actually funds RD&E activities
 – Process engineering innovation plays a major role in improving GM% and extending profitable business life cycles
Talent … Talent … Talent

- RD&E people are different than the prevailing business culture
- Continuous infusion of new talent refreshes any organization, especially R&D
- Development of well balanced innovation leadership demands multiple experiences as early as possible
- Teams prevail
- Different talent is needed at different stages
- T-shaped people with depth and breadth
Successful Innovation
The Critical Role of Leadership

• Capabilities, processes, culture, and money are critical

• But it takes *individual will* to lead innovation
 – determination and resolve in the face of uncertainty and change
 – acceptance of failure and comfort with scientific risk

• *And individual skill*
 – the backgrounds of our top leaders must reflect
 • real skills in technology and science
 • understanding – and rich intuition -- of how and why technology creates business value
At the End of the Day..........

- Innovation is Easy to say, Hard to do
 - It is all about the “how”: culture, leadership, talent, and process … and patience … and money

- A balanced innovation investment
 - Grows the existing businesses
 - Creates new businesses

- Still plenty of opportunity for invention and innovation in glass, ceramics and other inorganic materials
 - Especially when integrated with other technologies