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Redox Flow Systems 

Favorable Attributes 
•  Separation of 

Energy and Power 
•  Cost 
•  Scalability 
•  Efficiency 
•  Longevity 
•  Safety 

Conversion technology similar to PEM fuel cells 



Outline 
1. Membrane and electrolyte needs for 

RFBs 
2. Drawing from PEM FC Membranes:  

what’s out there 
3. Membrane behavior: what to expect 

o  Composition, Transport 
o  Stability 

4. Prospects for electrolyte development 
o  Trade-offs to consider 

5. Conclusions  



Attributes required of Polymer 
Electrolyte Membranes 

•  Low resistance under cell operating conditions. 
•  Long-term chemical and mechanical stability at 

elevated temperatures in oxidizing and reducing 
environments. 

•  Good mechanical strength, preferably with 
resistance to swelling. 

•  Low cross-over--pinhole free!   Minimize water 
pumping! 

•  Interfacial compatibility with catalyst layers. 
•  Low cost. 



Membranes/Electrolytes for RFBs 

 Literature shows high ASR 
•  Nafion 117 in a fuel cell:  ~0.15 ohm-cm2 
•  Nafion 117 plus electrolyte solution in an RFB:  as high 

as ~6 ohm-cm2 
 Improved chemical and mechanical stability 
 Need to ensure H-form membrane 
 Improved tolerance to cross-over needed 

•  Cross-over determines lower limit of membrane 
thickness 

•  For neutral species in aqueous solutions, it is difficult to 
get much ‘selectivity’ 

•  More likely for acidic solutions 



PEMs Passing Current in Contact 
with Electrolyte Solutions 

•  Electrokinetic Phenomena 
– Water pumping 

•  Ion Exchange 
– Partitioning:  use acid solution 
– Polyvalent ions particularly tricky 

•  ‘Donnan Breakthrough’ 
–  ‘Molecular’ Acid or Salt Uptake 

What Happens? 

Interplay between these… 



MEMBRANES FOR RFBS 

We’ve got Options! 



Membranes today:  PFSAs 
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New  3M Polymer 
SO 3 H 

Also:  Solvay-Solexis (SSC), Asahi 
New variability in EW, other properties 



Some Proposed Approaches to 
Improved Membranes (ca. 1999) 

•  ‘Synthesize and be damned’--infinite 
funding for synthetic  organic and 
polymer chemists 

•  More thermally stable or less costly membranes 
–  BUT need to keep water in or replace its function (high T) 
–  Typically sulfonated aromatics 

•  Water ‘replacements’   
–  Imidazole (Kreuer) 
–  Inorganic phases 
–  Phosphoric Acid and other acids 

•  Water ‘traps’ 
–  Sol-gel phase 

•  No light at end of tunnel for methanol blocking or 
decreased drag either   
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Poly (aromatics):   
If you can sulfonate it, it will be good!? 
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- Incorporation of highly dispersed hygroscopic metal oxide particles    
 (SiO2) or hydrophilic siloxane polymer to retain water (up to 10% allows 
 operation at 130-140°C at high humidification !).  
 Direct interpolymerization (precipitation) in extruded Nafion or adding silica to a    
 Nafion solution and recasting into a film 

K.T. Adjemian, S. Srinivasan, J. Benziger and A.B. Bocarsly, 
Investigation of PEMFC operation above 100 °C employing 
perfluorosulfonic acid silicon oxide composite membranes, 
Journal of Power Sources, 109 (2002) 356-364. 

Improving Water Retention 
‘Sand’ in Nafion 



Polymers:  Phase 2 
Smarter development:  Designer Polymers 
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F. Wang, et al., Macromol. Symp., 175 (2001) 387-395 

BPSH-X (with various X) 

Exert control over morphology, EW etc. 
A first example… 



More AFM Images 

BPSH-60 Nafion 117 Large, 
continuous 
ionic domains 

Small, well 
connected 
ionic domains 
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Smarter Composites 

(1)  Silica/Polymer composite membrane 
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Fluorinated Multiblock 
Copolymer 
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Toward a Description of 
Transport in RFB Membranes 

•  Species Diffusion, Migration 
– Water pumping 

•  Cross-terms 
– Partitioning:  use acid solution 

•  Redox Active Species transport by 
‘Electron Hopping’ 
–  ‘Molecular’ Acid or Salt Uptake 

Highly Complex: Many Species 

Interplay between these… 



Toward a Description of 
Transport in RFB Membranes 

•  Composition:  water, ion uptake 
•  Transport parameters 
– Conductivity, diffusion, coupling terms 
– Electron exchange rates as applicable 
–  ‘Molecular’ Acid or Salt Uptake 

Parameters Needed 

How to get all of this for every system! 

Simplified models 



Conductivity vs. Acid 
Concentration 
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Conductivity vs. Acid 
Concentration (Log Scale) 
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Two Effects 

•  Dehydration… 
– Strong acid causes decrease in water 

content due to lowering of water activity 



Water Sorption in Nafion 

•  Water uptake strongly 
dependent on RH even at 
room temperature 

•  Also strongly dependent 
on T 

•  At T >30, uptake is low 
for RH < 75% 

•  As T increases, decrease 
in water uptake, 
especially at high aw 
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Primary Fact: 
H+ Conductivity is Strongly Controlled by 

H2O Content 
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By the way, aromatic  conductivity drops 
off much faster with lower water content 



Two Effects 

•  Dehydration… 
– Strong acid causes decrease in water 

content due to lowering of water activity 
•  ‘Donnan Breakthrough’ 
–  ‘Molecular’ Acid or Salt Uptake causes 

conductivity to decrease non-linearly  



And that’s w/o any ions (other 
than H+) in the film! 

•  All non-H+ ions decrease conductivity 
 monovalent ~5 fold  
 multivalent 1 or more OM 

This is even worse for aromatic sulfonates! 

•  Water pumping also increased 
 Protons pull ~ 3 H2O/H+;  Na+: 6; Sr3+: 21 
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Conductivity Drops Even More Sharply for  Ar-SO3H 
Why?       Acidity of Different Groups… 

DFT Results 



Will  NON-AQUEOUS electrolytes 
ever make sense? 

– Positive: increased voltage possible;  
multivalent ions 

– Negative: even lower conductivity, COST, 
poor process fluids/safety 

–    
Example:  ionic liquid with 4 V window, 

multivalent :  maybe 5 fold increase in ED 
COST? 
This might make sense for niche application 

that is very footprint sensitive  



Summary 

•  Lots of membranes, chemistries 
•  Need focused understanding of needs 

to guide rational tailoring of materials 
– Extensive studies of physical chemistry 
– Transport modeling  

•  Cross-over:  materials vs. system 
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