Membranes and Electrolytes for Redox Flow Batteries

Thomas Zawodzinski Univ. of Tennessee-Knoxville and Oak Ridge Nat'l Lab

Redox Flow Systems

Favorable Attributes

- Separation of
 Energy and Power
- Cost
- Scalability
- Efficiency
- Longevity
- Safety

Conversion technology similar to PEM fuel cells

Outline

- 1.Membrane and electrolyte needs for RFBs
- 2.Drawing from PEM FC Membranes: what's out there
- 3.Membrane behavior: what to expect
 - Composition, Transport
 - Stability
- 4. Prospects for electrolyte development
 - Trade-offs to consider
- 5. Conclusions

Attributes required of Polymer Electrolyte Membranes

- Low resistance under cell operating conditions.
- Long-term chemical and mechanical stability at elevated temperatures in oxidizing and reducing environments.
- Good mechanical strength, preferably with resistance to swelling.
- Low cross-over--pinhole free! Minimize water pumping!
- Interfacial compatibility with catalyst layers.
- Low cost.

Membranes/Electrolytes for RFBs

- ✓ Literature shows high ASR
 - Nafion 117 in a fuel cell: ~0.15 ohm-cm2
 - Nafion 117 plus electrolyte solution in an RFB: as high as ~6 ohm-cm2
- Improved chemical and mechanical stability
- ✓ Need to ensure H-form membrane
- ✓ Improved tolerance to cross-over needed
 - Cross-over determines lower limit of membrane thickness
 - For neutral species in aqueous solutions, it is difficult to get much 'selectivity'
 - More likely for acidic solutions

PEMs Passing Current in Contact with Electrolyte Solutions

What Happens?

- Electrokinetic Phenomena
 - Water pumping
- Ion Exchange
 - Partitioning: use acid solution
 - Polyvalent ions particularly tricky
- 'Donnan Breakthrough'
 - 'Molecular' Acid or Salt Uptake

Interplay between these

MEMBRANES FOR RFBS

We've got Options!

Membranes today: PFSAs

 $(CF_{2}CF)_{n}(CF_{2}CF_{2})_{m}$ $OCF_{2}CF_{2}CF_{2}CF_{2}$ \bigcup $SO_{3}H$

Nafion: The World Champion

New 3M Polymer

Also: Solvay-Solexis (SSC), Asahi New variability in EW, other properties

Some Proposed Approaches to Improved Membranes (ca. 1999)

- Synthesize and be damned'--infinite funding for synthetic organic and polymer chemists
- More thermally stable or less costly membranes
 - BUT need to keep water in or replace its function (high T)
 - Typically sulfonated aromatics
- Water 'replacements'
 - Imidazole (Kreuer)
 - Inorganic phases
 - Phosphoric Acid and other acids
- Water 'traps'
 - Sol-gel phase
- No light at end of tunnel for methanol blocking or decreased drag either

Poly (aromatics): If you can sulfonate it, it will be good!?

Improving Water Retention 'Sand' in Nafion

A. I. Aujemian, S. Srinivasan, J. Benziger and A.B. Bocarsty, Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes, Journal of Power Sources, 109 (2002) 356-364.

11

Polymers: Phase 2 Smarter development: Designer Polymers

Exert control over morphology, EW etc. A first example...

F. Wang, et al., Macromol. Symp., 175 (2001) 387-395

More AFM Images

Large, BPSH-60 continuous ionic domains Small, well connected ionic domains

Nafion 117

Smarter Composites

(1)Silica/Polymer composite membrane

Fluorinated Multiblock Copolymer

1-150-160C 2-90-100C DMAc, toluene (16% solid)

Yield: 99%, IEC (calc.): 1.29 meq/g **15**

Toward a Description of Transport in RFB Membranes

Highly Complex: Many Species

- Species Diffusion, Migration
 - Water pumping
- Cross-terms
 - Partitioning: use acid solution
- Redox Active Species transport by 'Electron Hopping'

– 'Molecular' Acid or Salt Uptake Interplay between these...

Toward a Description of Transport in RFB Membranes

Parameters Needed

- Composition: water, ion uptake
- Transport parameters
 - Conductivity, diffusion, coupling terms
 - Electron exchange rates as applicable
 - 'Molecular' Acid or Salt Uptake

How to get all of this for every system! Simplified models

Conductivity vs. Acid Concentration

Conductivity vs. Acid Concentration (Log Scale)

Two Effects

• Dehydration...

 Strong acid causes decrease in water content due to lowering of water activity

Water Sorption in Nafion

- Water uptake strongly dependent on RH even at room temperature
- Also strongly dependent on T
- At T >30, uptake is low for RH < 75%
- As T increases, decrease in water uptake, especially at high a_w

Primary Fact: H+ Conductivity is Strongly Controlled by H₂O Content

By the way, aromatic conductivity drops off much faster with lower water content

Two Effects

- Dehydration...
 - Strong acid causes decrease in water content due to lowering of water activity
- 'Donnan Breakthrough'
 - 'Molecular' Acid or Salt Uptake causes conductivity to decrease non-linearly

And that's w/o any ions (other than H⁺) in the film!

- All non-H+ ions decrease conductivity monovalent ~5 fold multivalent 1 or more OM This is even worse for aromatic sulfonates!
- Water pumping also increased
 Protons pull ~ 3 H₂O/H+; Na⁺: 6; Sr³⁺: 21

Conductivity Drops Even More Sharply for Ar-SO3H Why? Acidity of Different Groups... DFT Results

r(O-O)= 4.235 Å

Will NON-AQUEOUS electrolytes ever make sense?

- Positive: increased voltage possible; multivalent ions
- Negative: even lower conductivity, COST, poor process fluids/safety
- Example: ionic liquid with 4 V window, multivalent : maybe 5 fold increase in ED COST?
- This might make sense for niche application that is very footprint sensitive

Summary

- Lots of membranes, chemistries
- Need focused understanding of needs to guide rational tailoring of materials
 - Extensive studies of physical chemistry
 - Transport modeling
- Cross-over: materials vs. system

Acknowledgements

Tang Zhigang

Alex Papandrew

Thanks!

Tom Zawodzinski

tzawodzi@utk.edu