


Electrical energy storage- a central 
component of the future grid

Courtesy AEP



Generation site storage
10s MWh ~ 10s GWh

10s MW ~ GW

Community storage
10s kWh ~ 100s kWh

10s kW ~ 100s kW

End user storage
Few kWh~10s kWh

few kW

Application scenarios and power/energy ratings

Transmission-substation
MWh ~ GWh

MW ~ GW



http://electricitystorage.org/

Performance and economic requirements
 Energy/power: depending on 

applications;

 Quick response preferable;

 Discharge duration: 
seconds ~ hours

 Efficiency: High, preferable; 

 Life: >10~15yrs, >5,000 deep 
cycles, higher for shallow 
cycles, depending on 
applications;

 Safety

References: 
o Report of DOE Advanced Materials & Devices Workshop, organized by TMS, 

Sandia and PNNL for DOE-OE and ARPA-E

o EPRI report on grid storage functional requirements, P94.002

 Costs: low capital cost, life cycle cost, 
social cost (considering carbon effects)



EES technology options
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Electrical charges:
Capacitors

Potential energy:
pump hydro, 
compress air

Kinetic energy:
flywheels

Chemical energy:
batteries

Direct 

Storage 
in 

charges

Indirect

storage 
via 

energy 
conversion

Beacon power



EES via chemical energy-batteries
 Free energy of chemicals converted into electrical 

energy: without “Carnot” cycles

 Potentially capable of uptake and release of electrical 
energy according to power and energy demands



Overall technology challenges
 Cost at least 2~3 x higher for broad market penetration
 Better economy reliant on improved reliability, durability, life 

and efficiency, along with manufacturing
 Require advancement in science and technology

 

Targets

 

Targets
Life cycle cost: 
4¢/kWh/cycle
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or regenerative fuel cells

Why RFBs?
 Capable of a large 

energy/power 
(but not specific energy or density)

 Separation of energy and 
power

 No-mechanical and thermal 
stress during cycling 

 Active heat management
 Quick response (milliseconds)
 Safe
 Potential low cost
 …
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Redox chemistries and exiting technologies
Others:
V2+/V3+ vs. Br-/ClBr2

-; 
Ce4+/Ce3+ vs. V2+/V3+;
Fe3+/Fe2+ vs. Br2/Br-;
Mn2+/Mn3+ vs. Br2/Br-;
Fe3+/Fe2+ vs. Ti2+/Ti4+, …

 VRB: V2+/V3+ vs. VO2
+/VO2+ 

 ICB: Fe3+/Fe2+ vs. Cr3+/ Cr2+

 ZBB: Br-/Br2- vs. Zn2+/Zn 

 PSB: Br2/Br- vs. S/S2-

Multi-100 kW 
or higher  
demonstrated
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Non-aqueous electrolyte, high V and ED, but high cost



 Specific energy 15~25 Wh/kg; energy density 20~33 Wh/liter

 Stability of electrolyte, 10~40oC

 High cost, >$500/kWh

Challenges of RFBs: take VRB as example

After EPRI cost analysis, 1 MW/8MWh plant, $4.9 mil

Vanadium 
electrolyte

38.5%

PCS and 
electrical 
components

28.8%

11.1%

11.9%

2.6%

Electrolyte storage 
and piping

Balance of plant and 
construction

Cell stacks

Electrode/
bi-polar plate

Membrane

Other materials

Manufacturing

o V2O5, $7/lb, fluctuated $1.5 ~$7.0/lb 
from 2001-2007

o Membrane, $125~350/m2/mil small 
volume; $25~65/m2/mil for large volume

o ~$600/kWh for 1 MW, 8 hr system

Capital cost=$2,300x(kW rating) + $300x(kWh rating) + $250,000



Novel design and system engineering to 
reduce shunt current

Optimize electrolyte and redox couples to 
increase energy density >25 Wh.kg-1

Increase current density (>50mA.cm-2) to 
decrease cell stacks size and materials use

Use more cost-effective membrane (<$50.m-2.mil-1)

Scale production

 Via use of more cost effective components, 
improvement in performance parameters and 
novel system engineering, along with scale-up 
of production.

Approaches to reduce cost



Na-batteries

 Na-beta alumina electrolyte batteries

 Na-Nasicon electrolyte batteries

 Na-ion (aqueous or 

non aqueous electrolyte) batteries
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Why Na-battery chemistries?

 Li-resources constrains;

 Low cost of raw materials

Electrochemical storage that utilize Na- or Na-containing electrodes and a 
Na+ conducting electrolyte, either solid or liquid
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NAB are electrochemical devices that store electrical energy via Na+ transport 
through conductive solid oxide membrane (typically β’’-Al2O3) at elevated 
temperatures. 

 Sodium-sulfur (SSB)

 Sodium-metal chloride (ZEBRA)

c
d

2NaCl + Ni        NiCl2 + 2Na E=~2.58 V 

2Na + 4S        Na2S4   E=~2.0 Vc
d

Na-beta alumina electrolyte batteries (NAB)

 Operated at 300~350oC

 High efficiency, up to >90%

 Capable of hours of discharge duration

 Quick response

 Up to 16MWhs demonstrated, for SSB

Invented and first investigated by 
Ford for vehicle applications



Challenges of NAB

 Na-S, concerned with safety and durability due to 
the violent Na-S reaction and corrosiveness of S

 NiCl/NaCl cathode (+NaAlCl4) in ZEBRA, 
improving safety and reliability and making more 
tolerant to over-charge/discharge.

Schematic of Na-metal halide Cell 
structure during charging

 But further improvement in 
power and utilization of Ni

 Further reduction in capital 
cost and life cycle cost

Schematic of Na-S cell 
structure during charging



Reduction in operation oC
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Area specific resistance of PNNL's solid electroyte for Na-halide batteries
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β’’-Al2O3

 Excellent conductivity, 0.3~0.5 s/cm, 300oC
 Thinner, concerning mechanical and structural stability and requiring 

chemistry changes 



Low temperature Na-batteries
 Coors Tech (parent of 

Ceramatec) developed New 
Na-battery operated at lower 
temperatures

 Built upon Nasicon membrane
 Planar design
 Operated <98oC

 Aquion Energy developing Na-ion 
battery using aqueous electrolyte

• Operated at RT
• Cathode: Na0.44MnO2

• Aqueous 1 M Na2SO4 electrolyte
• Activated carbon anode
• 1.7V, cycled over 1,000 deep cycles 

(up to 4C) without degradation



Li-ion for stationary applications
 Widely developed for vehicle applications

 High energy/power density; high efficiency (close to 100%)

 Up to MW levels are being demonstrated

 But cost >$1,000/kWh; concerns over, heat management, safety, …

 V2G?

 Long life, low cost Li-ion chemistries

Cathode: LiFePO4 
Anode: self-assembled  TiO2 base composite
Electrolyte: 1M LiPF6 in EC/DMC
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Lead-carbon battery-UltraBattery

Courtesy The Furukawa Battery Co. 

 Asymmetric capacitor – hybrid of lead-acid and 
carbon ultra-capacitor

 Lead electrode in lead-acid replaced by carbon 
electrodes of capacitor

 Energy stored at anode by double layer and 
possible H+ pseudo-capacitance

 Improved cycle life and power

Courtesy SNL

 Demonstration and optimization
 Scientific understanding of carbon 

effects
 Cost reduction (higher than Pb-acid 

due to carbon electrodes)



Emerging technologies
 Invented during 1970’s energy crisis, flow batteries, Na-beta 

batteries, etc.
 Developed in the past two decades, Li-ion, lead-carbon, etc.
 New technologies require efforts from science to technology

o Molten metal large scale battery 

o Zn-MnOx flow battery 

o Soluble lead flow battery 

o Solid state Li-ion battery  

o …

ARPA-E

 “Ultimate” technologies: high energy/power, long life, low cost, 
safe, scalable, …, addressing the needs of both stationary and 
mobile?



Conclusion remarks
 There has been increasing awareness on the needs of 

grid storage
 Government funding plays important roles to advance 

related science and technologies
 Participation of industries is critical to 

commercialization and market penetration 
 A new around of world-wide competition in grid 

storage is ongoing
 Invented in the US, but commercialized elsewhere?
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