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Electrical enerqgy storage-a central
component of the future grid
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Application scenarios and power/energy ratings

Bulk Generation

Generation site storage
10s MWh ~ 10s GWh
10s MW ~ GW
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MWh ~ GWh
MW ~ GW
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10s kW ~ 100s kW
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Performance and economic requirements
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Storage Power Requirements for Electric Power Utility Applications

d  Safety

Datafmm Sandia Repot 20021214 NUtP://electricitystorage.org/

O Costs: low capital cost, life cycle cost,
social cost (considering carbon effects)

References:

Report of DOE Advanced Materials & Devices Workshop, organized by TMS, \ﬁ/

Sandia and PNNL for DOE-OE and ARPA-E vacific Northwest
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EPRI report on grid storage functional requirements, P94.002




EES technology options
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EES via chemical energy-batteries

2 Free energy of chemicals converted into electrical
energy: without “Carnot” cycles

0 Potentially capable of uptake and release of electrical
energy according to power and energy demands
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Overall technology challenges

) Cost at least 2~3 x higher for broad market penetration

) Better economy reliant on improved reliability, durability, life
and efficiency, along with manufacturing

O Require advancement in science and technology
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Targets 4¢/kWh/cycle
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Redox flow batteries (RFB)
or regenerative fuel cells

Why RFBs?
1 Capable of a large
energy/power
“eame (but not specific energy or density)

1 Separation of energy and
power

No-mechanical and thermal
stress during cycling

Active heat management
Quick response (milliseconds)
Safe

Potential low cost

Electrolyte
Tank

Electrode lon-selective

Membrane
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Redox chemistries and exiting technologies

2 VRB: V2+/V3+ ys, VO,*/VO2+ Others:
V23t ys, Br/CIBr,;
) ICB: Fe3*/Fe2* vs. Cr3*/ Cr2* 3 2
, , - ('\)/lrur:;ﬁg? W Ce*/Ce3* vs. VZH/\/3+
1 ZBB: Br/Br> vs. Zn%*/Zn demonstrated Fe3*/Fe2* vs. Br,/Br-

J PSB: Br2/Br-vs. S/S? Mn2t/Mn3* vs. BrZ/Br-;
Non-aqueous electrolyte, high V and ED, but high cost Fes*/Fe=r vs. TiZ*[Ti**, ...

H, evolution O, evolution
) A Br/Br >
Tnl/In oz /\3: Mn3*/MnZ*
Er3+/§[:r.2+ |:|‘L|2+/EU+ VI]2+/EA2+ Elz/El Mﬂl][l'/Mﬂl]Q
\ BrCly /B Cet*/ e
T#/TE g /g ™ b ﬁé/E it /
|| e Fed/Fel n
~ Co%/Ca?

|E | | |E | | 7

-1.0 -0.5 0.0 0.5 1.0 1.5 Z.Gaciﬁglmrﬂ;ggggm
Standard potential (V) of redox couples -



Challenges of RFBs: take VRB as example

1 Specific energy 15~25 Wh/kg; energy density 20~33 Wh/liter
1 Stability of electrolyte, 10~40°C
O High cost, >$500/kWh

Capital cost=%$2,300x(kW rating) + $300x(kWh rating) + $250,000

PCS and Electrolyte storage 0 V,0, $7/lb, fluctuated $L.5 ~$7.0/b

electrical and piping Membrane from 2001-2007

components v r’ 0 Membrane, $125~350/m?/mil small
|—\1, volume; $25~65/m?/mil for large volume

0 ~$600/kWh for 1 MW, 8 hr system
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Approaches to reduce cost  m.

Flow Frame
(Anolyte)

Membrane

1 Via use of more cost effective components,
improvement in performance parameters and
novel system engineering, along with scale-up
of production.

200 Optimize electrolyte and redox couples
increase energy density >25 Wh.kg
400 Increase current density (>50mA.cm) to (Cavolyie) oo
decrease cell stacks size and materials use
.
< Use more cost-effective membrane (<$50.m-2.mil)
< 300
pry Novel design and system engineering to
reduce shunt current
200 Scale production
100

2010 2011 2012 2013 \%/
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Na-batteries

Electrochemical storage that utilize Na- or Na-containing electrodes and a
Na* conducting electrolyte, either solid or liquid

Why Na-battery chemistries?

O Li-resources constrains;

O Low cost of raw materials
] Na-beta alumina electrolyte batteries 7300

1 Na-Nasicon electrolyte batteries

) Na-ion (aqueous or ‘ .
RT

non aqueous electrolyte) batteries

matur»

eratin
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Na-beta alumina electrolyte batteries (NAB)

NAB are electrochemical devices that store electrical energy via Na* transport
through conductive solid oxide membrane (typically B”-Al,O,) at elevated
temperatures.

Invented and first investigated by

» Sodium-sulfur (SSB) Ford for vehicle applications

2Na + 4S == Na,S, E=~2.0V Beta
d Alumina
Tube \V;

» Sodium-metal chloride (ZEBRA)

2NaCl + Ni% NiCl, + 2Na E=~2.58 V

Operated at 300~350°C

High efficiency, up to >90% Molten

0
0
0  Capable of hours of discharge duration
0 Quick response

0

Up to 16MWhs demonstrated, for SSB
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Challenges of NAB

Beta-Alumina Highly-Resistive Layer
N ghlyR y

ulfur Electrode

o )

J Na-S, concerned with safety and durability due to
the violent Na-S reaction and corrosiveness of S

0 NiCl/NaCl cathode (+NaAICl,) in ZEBRA,
iImproving safety and reliability and making more
tolerant to over-charge/discharge.

\§
.
.

harge

Sulfur
Contaner

g

Protection

/ Layer

MiCl, ion Products
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Schematic of Na-S cell
s structure during charging

. Compartment

But further improvement in
power and utilization of Ni

Further reduction in capital
cost and life cycle cost

Schematic of Na-metal halide Cell \;?/

structure during charging Pacific Northwest
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ASR (Q-cm?)

Reduction in operation °C

1 Excellent conductivity, 0.3~0.5 s/cm, 300°C
. Thinner, concerning mechanical and structural stability and requiring

chemistry changes

Area specific resistance of PNNL's solid electroyte for Na-halide batteries
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Low temperature Na-batteries

1 Coors Tech (parent of
Ceramatec) developed New
Na-battery operated at lower
temperatures

1 Built upon Nasicon membrane

. Planar design

1 Operated <98°C

Aquion Energy developing Na-ion = | ; T

battery using aqueous electrolyte
Operated at RT | 3 Discharge Ei;:éa'iyl
Cathode: Na, ,,MnO, S 4C cycling rate |
Aqueous 1 M Na,SO, electrolyte % , | i
Activated carbon anode &, SO0th cycie
1.7V, cycled over 1,000 deep cycles IS ol o 1
(up to 4C) without degradation Specific Capacity (mAh/g) (a)

; 0 26!‘.} mlm BEIIJ BE}D 1000

Cycle Number
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Li-ion for stationary applications

Widely developed for vehicle applications
High energy/power density; high efficiency (close to 100%)
Up to MW levels are being demonstrated

But cost >$1,000/kWh; concerns over, heat management, safety, ...
V2G?

I Ny N BN By

Long life, low cost Li-ion chemistries
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Lead-carbon battery-UltraBattery

1 Asymmetric capacitor — hybrid of lead-acid and
carbon ultra-capacitor

] Lead electrode in lead-acid replaced by carbon
electrodes of capacitor

1 Energy stored at anode by double layer and
possible H* pseudo-capacitance

J Improved cycle life and power 110

O Demonstration and optimization

O Scientific understanding of carbon
effects

O Cost reduction (higher than Pb-acid
due to carbon electrodes)

Ultra Battery VRLA (After Cycling at 1C, 2C, & 4C Rate)

100 >\ {R

+
Lead-acid battery |

I Asymmetrical capacltnr] “_W/
£ 90 ]
y’T /\\
Responding to Responding to !
energy requirements pulse power requirements

70
Separator 50

UItraBattery 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

% Of Initial Capacity

60 AGM VRLA (After Cycling at 1C Rate)

HRP SoC Cycle number

Courtesy SNL H‘Zﬁ/

Courtesy The Furukawa Battery Co. Pacific Northwest
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Emerging technologies

- Invented during 1970’s energy crisis, flow batteries, Na-beta
batteries, etc.

] Developed in the past two decades, Li-ion, lead-carbon, etc.
1 New technologies require efforts from science to technology

o Molten metal large scale battery
0 Zn-MnO, flow battery

0 Soluble lead flow battery ___ ARPA-E
o Solid state Li-ion battery

O ...

—

 “Ultimate” technologies: high energy/power, long life, low cost,
safe, scalable, ..., addressing the needs of both stationary and

mobile? \:y/
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Conclusion remarks

J There has been increasing awareness on the needs of
grid storage

J Government funding plays important roles to advance
related science and technologies

) Participation of industries is critical to
commercialization and market penetration

J A new around of world-wide competition in grid
storage is ongoing
- Invented in the US, but commercialized elsewhere?
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