Large-Scale Energy Storage Technology Overviews

UltraBattery — Grid Storage.

Advanced Lead — Carbon

Technology

Regulation Income Projection (Estimated Service Business 15 Yr IRR)*

* UltraBattery Storage Solution

- Optimisation will move IRR bands downward
- Bidding strategy will also move IRR bands downward

Grid Scale Energy Storage

Grid Stability

Renewable Smoothing **Data Center UPS**

Reliable Grid Scale Storage

Power Conditioning System

Regulation

* PJM

Wind Energy Ramp Rate

Solar Energy Smoothing

Regulation using Storage

* PJM

Regulation Signal and Storage SoC

Power Impact on Storage

Ultra Battery

UltraBattery is a hybrid energy-storage device, which combines an asymmetric supercapacitor and a lead-acid battery in one unit cell, without extra electronic control.

An "Order of Magnitude" Breakthrough

- Lead Acid is the leading technology in terms of power \$/kW. Challenge has been longevity.
- "Using the HRPSoC cycling profile at the 1C1 to 4C1 rate, the UltraBattery cycle performance was about **thirteen times*** greater (>15,000 cycles) than the AGM VRLA battery (1,100 cycles)". *Results of independent Sandia testing released December 2008

Designing for Power Impact

Energy Impact on Storage

Designing for Energy Impact

* Furukawa test results of optimised VRLA presented in Macau ALABC 2009

Reliable Storage for Grid Stability

Economic Objective

Objective

- Achieve ability to perform continuous regulation.
 - BESS suitable for 15 year operation with one battery replacement cycle.
 - Total Service cost target of ~\$25 / MW of regulation / hr

Stretch Objective

- Optimize solution and achieve 10-15 years continuous operation without battery replacement.
 - Service cost target of ~\$20 / MW of regulation provided / hr

Regulation Income Projection

	2010	2011	2012	2013	2014	2015	2020	2025
Frequency Regulation Price (\$/MWh)								
PJM	27.73	31.99	33.63	35.17	36.62	37.93	45.05	53.21
PJM (opportunity cost corrected)	34.66	39.98	42.03	43.97	45.77	47.42	56.32	66.51
PJM (Natural Gas Extrapolation (NGE))	22.95	27.56	29.21	28.12	27.94	28.78	30.39	31.97
PJM (NGE opportunity cost corrected)	28.68	34.45	36.52	35.16	34.92	35.97	37.99	39.97
NY-ISO	48.50	54.57	56.92	59.25	61.67	63.40	75.14	87.47
ISO-NE	24.00	24.72	25.46	26.23	27.01	27.82	32.25	37.39
CAISO	31.50	32.45	33.42	34.42	35.45	36.52	42.33	49.08
Average frequency regulation price	33.47	37.23	38.87	39.80	40.97	42.22	48.81	56.08

Regulation Income Projection (Natural Gas Analysis applied to PJM)

PJM (NGE opportunity cost corrected)

Regulation Income Projection (Estimated Service Business 15 Yr IRR)*

* UltraBattery Storage Solution

- Optimisation will move IRR bands downward
- Bidding strategy will also move IRR bands downward

UltraBattery applied to Grid Ancillary Services

Product Development Performance Marketing Sandia Ecoult **UB Longevity Characterization** Testing **Testing EPM CSIRO** and Optimisation Testing Testing PJM Regulation Newcastle Hampton Hampton Phase 2 Testing Phase 1 Services 1x320 UBs 6x320 UBs 60 UBs 3 x 60 Standard 48 UBs - 48 Standard 1MW PCS 3 x 1 MW PCS 144kW PCS 8 x 5kw Inverters Algorithm Delivers CUB product Automates UB production Wind Turbine and Grid **Development Platform** Integration Proves Solution and Scale Commercial Application

Smoothing Algorithm and Grid Integration Development

