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Stationary storage applications are very wide compared to 

transportation applications 
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P. Butler, J. L. Miller, P. A. Taylor, Energy Storage Opportunities Analysis Phase II Final Report A Study for the DOE 

Energy Storage Systems Program, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, 

California 94550,2002. 



Different technologies will have different applications. There will 
not be a single answer for the storage problem. 
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Li Ion Battery 

NaS,  

Na metal halide 

Vehicle 

Energy Density and Cost  

Lifetime and Capital  Cost 
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$250/kWh Flow  Batteries 

Fly Wheels 

Stationary energy applications  

$100-150/kWh, 

Stationary power applications 

Jun Liu,* Zhenguo Yang,* John P. Lemmon, Carl Imhoff, Michael Kintner-Meyer, Gordon L. Graff, Liyu Li, Jianzhi Hu, Yuliang Cao, 

Gordon Xia, Birgit Schwenzer, Viswanathan, Vilayanur V, Suresh Baskaran, Vincent Sprenkle, James A. Voigt, John D. Boyes, 

Justine E. Johannes and Marjorie Tatro, Materials Science and Materials Chemistry for Large-Scale Electrochemical Energy 

Storage for the Electrical Grid, submitted 



Analysis Results for Pacific Northwest Region 

Questions: 

Preliminary answers: 

a) Balancing requirements are estimated to be about 4 GW; 

b) Current practice is not the least expensive option; 

c) Electrochemical storage can be cost competitive; 

d) Possible solutions:  

 NaS, NaS+DR, NaS+PH, Li-ion+DR, NaS+PH+DR 

e) Arbitrage not economical in the near future (by 2019). 

 

 

 

Three Gorge Dam: 

$25B investment 

18GW capacity 
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Batteries 

Different methods for electrochemical energy storage  
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Flow batteries 

Four major battery technologies: Li, Na, Pb-acid and flow batteries 
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Storage technologies could be developed and implemented in several stages 

depending on the market requirements 

o Improve efficiency >90%(cell)/80%(stack)

o Improve materials performance
o New cell designs

o New materials

o New storage chemistry
o Mass production

o Revolutionary 

technologies
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Grand Challenges for Large Scale Energy Storage 

 

Fundamental understand of the materials properties and chemical 

processes in complex, reactive environments and systems; 

 

New materials, chemistry and components to significantly improve the 

efficiency, reliability, safety and life span of current and future storage 

systems; 

 

Revolutionary designs, concepts and architectures that can significantly 

reduce the system and maintenance cost: of large energy storage 

systems; 

 

Novel energy storage mechanisms, energy storage technologies that 

are environmentally friendly and that are not dependent on materials 

and chemicals of limited supply; 

 

Tools and methodologies to predict and analyze the economics of 

specific technologies for different scales/different applications and guide 

smart grid integration. 
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State-of-the-art characterization and modeling tools should be used to understand 

the fundamental chemistry in aggressive and concentrated electrolyte solutions 

encountered in redox flow batteries, Na-S batteries and Na-metal halide batteries. 

Redox flow battery 

Redox reaction in V flow battery: 

(b) 

The energy density is limited by the solubility, but 

the solution chemistry is poorly understood in 

concentrated acids and salts 

More from Professor Maria Skyllas-Kazacos 
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High field NMR technique is a powerful tool to study the chemical speciation and 

reactions in the flow batteries. 

The efficiency, durability, activity are limited  

by the poor understanding of the chemical 

speciation, chemical and materials reactions. 

Careful study of electrolyte chemistry has 

led to significant increase of all V flow 

battery (from under 2M to 3M) 
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 Redox chemistries and exiting technologies 
Others: 

V2+/V3+ vs. Br-/ClBr2
-;  

Ce4+/Ce3+ vs. V2+/V3+; 

Fe3+/Fe2+ vs. Br2/Br-; 

Mn2+/Mn3+ vs. Br2/Br-; 

Fe3+/Fe2+ vs. Ti2+/Ti4+, … 

 VRB: V2+/V3+ vs. VO2
+/VO2+  

 ICB: Fe3+/Fe2+ vs. Cr3+/ Cr2+ 

 ZBB: Br-/Br2- vs. Zn2+/Zn  

 PSB: Br2/Br- vs. S/S2-  

Up to 100 kw or 

multi-MW 

demonstrated 
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Non-aqueous electrolytes for redox flow batteries with wide 

operation voltage range 

More from Professor Austen Angell 



Requirement of energy storage materials. 

 

 Controlled hierarchical architectures for maximum flow 

 High surface area 

 Multifunction: electron and ion conductivity,  

 Multi-component 

 Chemical, thermal and mechanical stability 
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From this To this 

2000 year old 

Baghdad “battery” 
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TiO2 anode materials prepared by hydrothermal methods 

Y. S. Hu, L. Kienle, Y. G. Guo, J. Maier, Adv. Mater. 2006, 18, 1421. 



High quality mesoporous silica can be easily made with surfactant templated, self-

assembly approaches, but other crystalline materials are very difficult. 

Lu et al., Nature 1997 
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B. Smarsly et al, Chem. Mat., 2004, 16, 2948 

Surfactant templated 

mesoporous TiO2 is usually made 

of nanocrystalline, anatase walls. 

Crystal growth and phase 

transition causes pore structure 

collapse during heat treatment. 



Novel nanoporous carbon materials have potential for 
high energy density and high power 

17 
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Pore sizes matters for transport properties 



Highly Crystalline Mesoporous TiO2 

Wang, D. Liu, J. et. al, 

Chem. Mater. 2008. 

Crystalline rutile phase 

before and after 

calcination. 
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Electrochemical Performance of Mesoporous 
Rutile ad Anode for Li-ion Battery 
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Modeling of charge transport and structural evolution complements 

experimental results from electrochemical characterization and NMR. 

Rock salt cubit structure should have a capacity high than 300 mAh/g 



Step 3: From single phase to mutliphase self-assembly 

using extended nanostructural building blocks 

The substrate becomes a functional component 



Graphene TiO2 nanocomposites 

Want et al, ACS Nano, 2009 



Improvement of high charge rate behavior for Both rutile and anatase 



Tarascon & Armand, Nature 2001 414, 359-367 

Cathode & Anode 

Si 

LiMnPO4 

25  

Challenges for Li-ion batteries: high voltage, high capacity 

cathode materials, and stable anode materials  

More cathodes work from Dr. Mike Thackeray 
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Potential low cost long lasting Li-ion batteries based on LiFePO4 and TiO2 

More on safety from SNL 
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2M V4+ Nafion 
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New understanding of Nafion membranes: wide pore channels (2.4 nm), 

suggesting the importance of water diffusion for H conducting. Such water 

diffusion mechanism will also favor the diffusion of hydrated cations. 

K. Schmidt-Rohr, Q. Chen, Nature Materials 2008, 7, 75. 

More membrane work from Dr. Thomas Zawodzinski 
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New designs and architectures: new thinking is needed on how the 

large batteries work much more efficiently and safely 
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More from EeaglePitcher (Dr. Jim Degruson) 
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More from GE (Dr. Glen Merfeld) 



Lead-carbon batteries 

Courtesy The Furukawa Battery Co.  

 Asymmetric capacitor – hybrid of lead-acid and carbon ultra-capacitor 

 Lead electrode in lead-acid replaced by carbon electrodes of capacitor 

 Energy stored at anode by double layer and possible H+ pseudo-capacitance 

 Carbon electrode acts as a buffer to charge/discharge currents, preventing high rates 

on lead negative electrode 

 Improved cycle life and power 

L. T. Lam, R. Louey, Journal of Power Sources 2006, 158, 1140; 

b)P. T. Moseley, R. F. Nelson, A. F. Hollenkamp, Journal of 

Power Sources 2006, 157, 3; 

More from East Penn  



Fundamental discoveries and total new mechanisms could lead to room temperature 

batteries for $100/kWh for large scale applications? 

Biology stores energy with Na, K, Ca ions, not Li ions (electrical eels). 

Storing large amount of 

energy using NaCl? 

J. Xu, D. A. Lavan, Nature Nanotechnology 2008, 3, 666. 
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A wide range of host materials can be sued to Na ion storage 
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Fundamental discoveries and total new mechanisms could lead to room temperature 

batteries for $100/kWh for large scale applications? 
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Grand Challenges for Large Scale Energy Storage 

 

Fundamental understand of the materials properties and chemical 

processes in complex, reactive environments and systems; 

 

New materials, chemistry and components to significantly improve the 

efficiency, reliability, safety and life span of current and future storage 

systems; 

 

Revolutionary designs, concepts and architectures that can significantly 

reduce the system and maintenance cost: of large energy storage 

systems; 

 

Novel energy storage mechanisms, energy storage technologies that 

are environmentally friendly and that are not dependent on materials 

and chemicals of limited supply; 

 

Tools and methodologies to predict and analyze the economics of 

specific technologies for different scales/different applications and guide 

smart grid integration. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   


