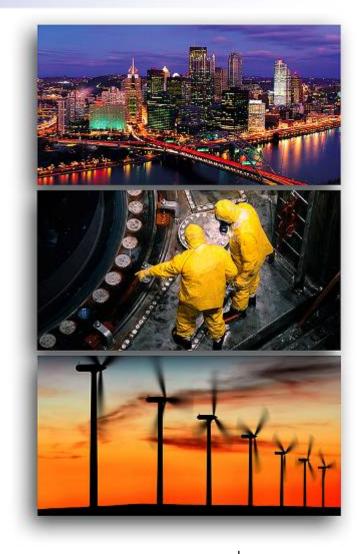


EPEI ELECTRIC POWER RESEARCH INSTITUTE

Applications and Requirements for Grid-Scale Energy Storage

Haresh Kamath 16 September 2010

The Electric Power Research Institute (EPRI)


- Independent, non-profit, collaborative research institute, with full spectrum industry coverage
 - Nuclear
 - Generation
 - Power Delivery & Utilization
 - Environment
 - Technology Innovation
- Major offices in Palo Alto, CA; Charlotte, NC; and Knoxville, TN

Our Members...

- 450+ participants in more than 40 countries
- EPRI members generate more than 90% of the electricity in the United States
- International funding of more than 18% of EPRI's research, development and demonstrations
- Programs funded by more than 1,000 energy organizations

Help Move Technologies to the Commercialization Stage...

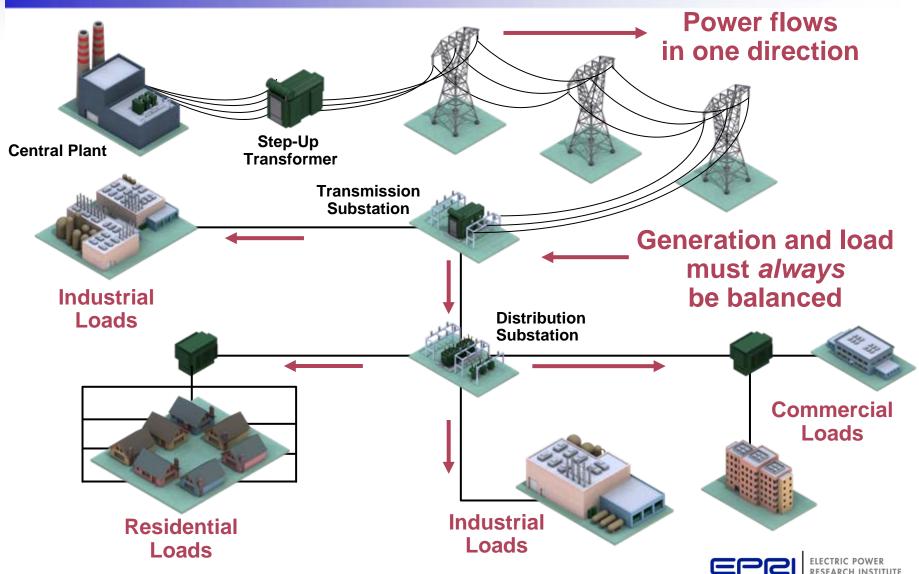
National Laboratories Universities

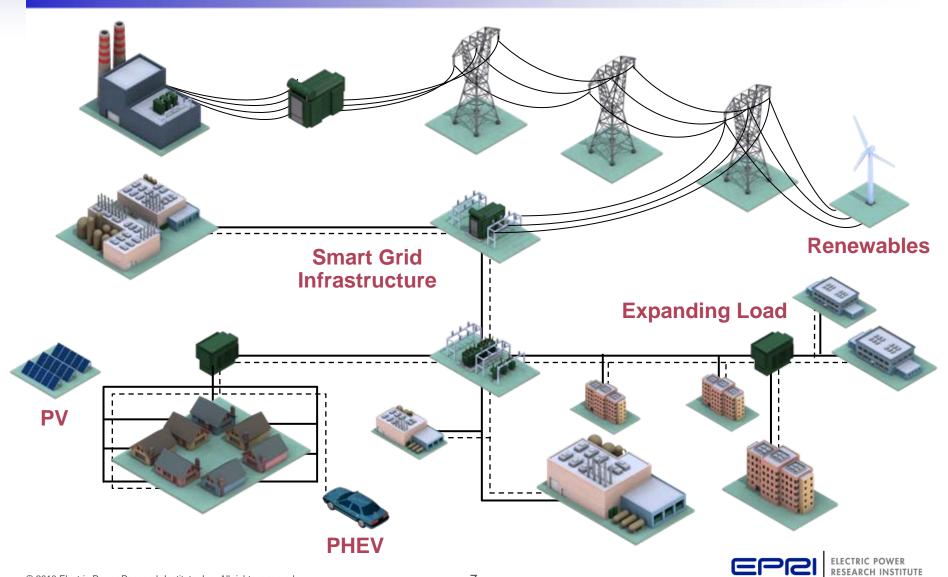
EPRI

Suppliers Vendors

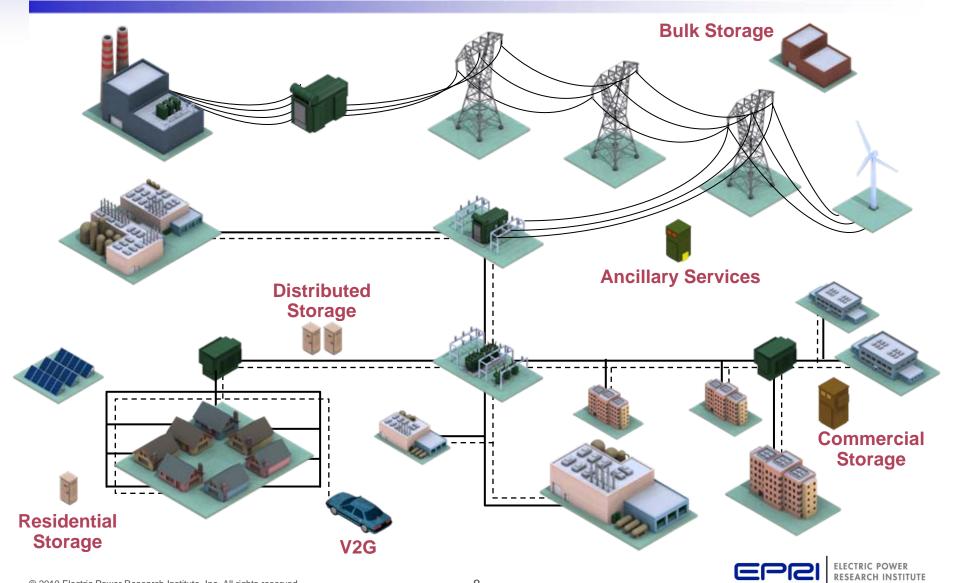
Technology Accelerator!

Grid Energy Storage: Taking electricity into the fourth dimension!

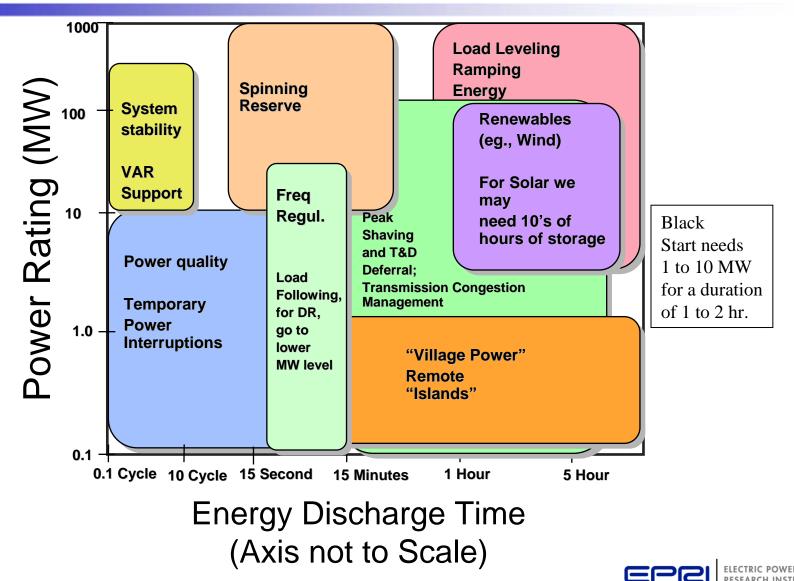

• Storage moves electricity in time, just as transmission moves it through distance

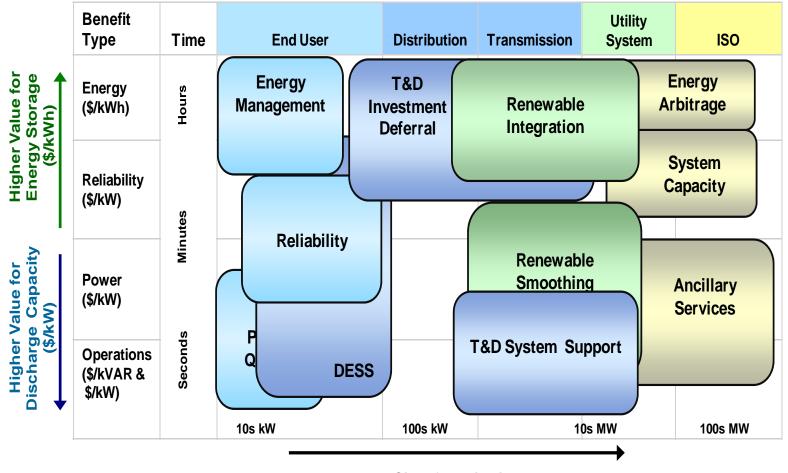

- Storage enhances the flexibility of the bulk grid, accommodating more variable renewable energy
- Storage increases reliability and asset utilization of the power delivery system

How the Electricity Grid Works Today



© 2010 Electric Power Research Institute, Inc. All rights reserved.


How the Grid is Changing


The Role of Storage

Storage Applications

Overlapping applications

Size of Application

Enabling Grid-Ready Storage

Technology Capabilities

Grid-Ready Storage Solutions

Industry Requirements

Grid-Ready Storage Safe and Reliable Cost-effective Ready for Integration Established Track Record

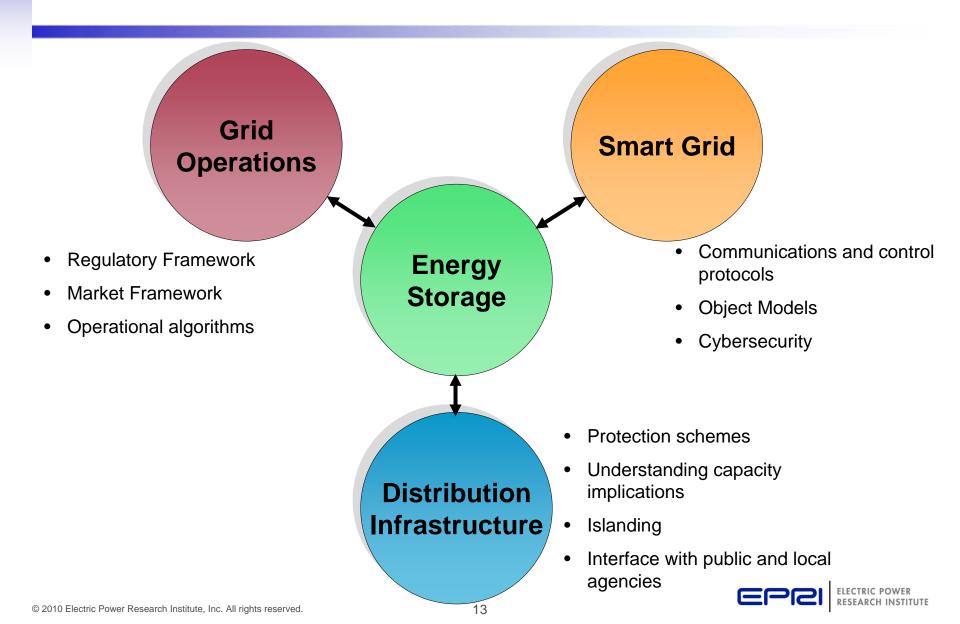
Critical Parameters for Grid-Ready Storage

Technical Specifications

Power rating Energy rating (duration) Operating Voltage Temperature Range Footprint Reliability Efficiency Lifetime Required Maintenance

Economic Considerations

Initial Cost Lifetime Cost Operating Costs Maintenance Costs Disposal Costs Costs of Alternatives Possibility of Multiple Value Streams


Other Factors

Safety Environmental Effects Recyclability Regulatory Status Public Perception

The customer must know what he is getting!

Storage must interface with all aspects of grid

Energy Storage at EPRI

Near-term Focus: Grid-Ready Storage Solutions

- EPRI goal: Reliable, costeffective storage solutions in three areas:
 - Large-scale bulk storage as a balancing resource for renewables (> 50 MW for several hours)
 - Substation storage for transmission and distribution asset upgrade deferral (1 – 10 MW for 2 – 6 hours)
 - Distributed energy storage systems at neighborhood level (15 25 kW for 2 4 hours)

Functional Requirements for Energy Storage Systems

Project Goals

The overarching goal of project is to develop functional requirements for energy storage systems connected to the electric grid to be used in specific ways (use cases/operational modes). From such functional requirements, vendors will be able to develop energy storage system products that meet utility needs.

Project Management and Staff

EPRI

Bill Steeley | Project Manager Ben Norris | Technical Content

Project Timeframe

- April 1st Commencement of Project
- May August Webinar Reviews
- August 31st Draft Report
- September 30th Project Completion

TTC

Jeff Serfass | Facilitation of collaboration Emanuel Wagner | Project Coordinator

P94.002 Energy Storage and Distributed Generation Options for Grid Support and Reliability Report Outline – Overview

- 1. Executive Summary
 - Project description and goals, Methodology and participants, Results, Conclusions
- 2. Introduction
 - Need for Energy Storage, Defining functional requirements, This project
- 3. Substation Grid Support Functional Requirements Eva Gardow
 - storage at the substation or distribution feeder
- 4. Distributed Energy Storage System (DESS) Functional Requirements Tom Walker
 - storage at the transformer serving several customers
- 5. Energy Storage to Support Renewable Energy Integration Functional Requirements for
 - A. Wind Smoothing (Ramping) in Power System Operations Dale Bradshaw
 - B. PV Transient Support in Power System Operations Mike Grant
 - C. Load Shifting to Integrate Wind and Solar in Power System Operations George Gurlaskie
- 6. Recommendations for Future Work
- 7. Appendices List of Organizations that Participated and other Resource Materials

Functional Requirement – Overview 1/2

Functional Requirements	Use Cases / Operation Modes	Interconnection	Notes
 Substation Grid Support 1 – 20 MW 2 – 6 hours Minutes only for frequency regulation Includes Stationary Transportable Modular 	 Peak load management Frequency regulation Capacity market (RTO/ISO) Reactive Support Support for critical loads during outage (Islanding) 	 Distribution voltage Substation or feeder 	 Use cases are listed in order of priority Products do not need to meet all use cases Peak load management is controlled based on substation/feeder real time loads Frequency regulation based on signals from ISO Capacity market based on control from ISO System may be modular
Distributed Energy Storage System (DESS) • 25 – 1000 kW • 1 – 4 hours	 Peak load management Increase customer reliability (backup power) Voltage regulation 	 Secondary voltage Utility side of meter Can operate as island 	 No frequency regulation support Peak load management is controlled based on substation/feeder real time loads Reactive power support based on local voltage No DC ports (as in AEP doc) Dampens PV variability

RESEARCH INSTITUTE

Functional Requirement – Overview 2/2

	ergy Storage to ntegrate Renewables	Use Cases/ Operating Modes	Inter- connection	Notes
A. •	PV Transient Support Power up to several MVA (TBD by utility site) 1 second to 20 min (TBD by utility)	 Eliminate rapid voltage and power swings (flicker) on distribution systems where high-penetration levels of PV systems are found 	 Distribution voltage (4kV - 34kV) 	 Better manage the intermittency of solar real power output due to cloud cover (act like an electric shock absorber). Reactive power controlled based on local voltage
в. •	Wind Smoothing (Ramping) 1 – 100 MW 2 – 15 minutes	 Ensure windfarm ramp-rates (MW/min) are kept to within design limits; Maintain local transmission and sub-transmission voltage 	 Medium or transmission voltage 	 Typically windfarm owned and operated
r h	Load Shifting Power defined by size of enewable resource; kW to bundreds of MW Jp to 10 hours	 Shift renewable generation to peak times Utility demand response resource Participate in capacity markets as a dispatchable resource Energy arbitrage Ancillary services 	 Mainly transmission and distribution voltages Could also apply to secondary distribution voltages 	 May be directly coupled and sized to local renewable resource or sized and operated independently May also serve to smooth windfarm output and/or dampen PV transients

Chapter Outline for Each Functional Requirement

Description of Application

- Block Diagram
- Scope

Use Cases/Operating Modes Performance Ratings

- System Definition
- Auxiliary Loads
- System Ratings

System Effectiveness

- System Efficiency
- Performance Curve

Physical Characteristics

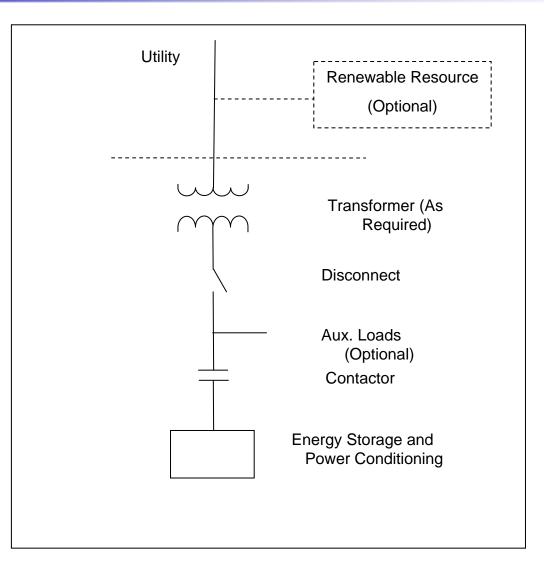
- Size
- Transportation Standards
- Harnessing
- Status Lights and Alarms
- Environmental Conditions

Electrical Interface

- Standards
- Disconnect Breaker
- Contactor

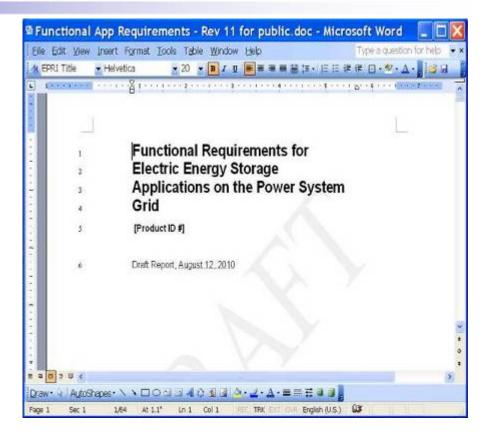
Communications, Control and Data Management

- Communications Method
- Communications Protocol
- Integrated Interface
- Operational Data
- Event-triggered Data
- Data Access


Installation and Maintenance

- Installation
- Operation and Maintenance
- DC Maintenance

Safety


Sample Block Diagram for Load Shifting

P94.002 Functional Requirements for Electric Energy Storage Applications on the Power Grid

Project Manager: William Steeley Product ID: 1020075

- Plans and Next Steps
 - Currently obtaining input from stakeholders to incorporate into the next version of draft report
 - Working Groups will then review and revise as necessary
- Schedule
 - Finish draft report
 - Complete Project in 4th QTR

Together...Shaping the Future of Electricity

