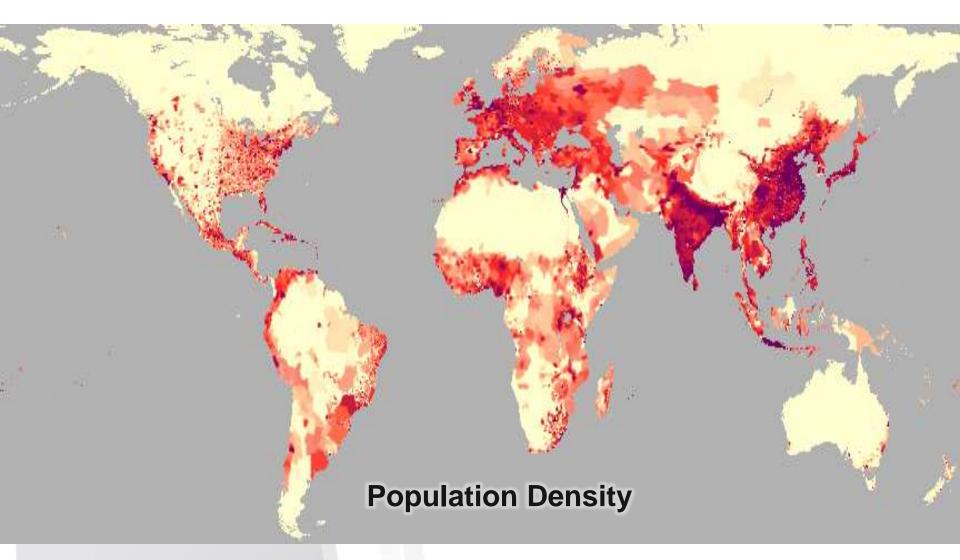


ADVANCED RESEARCH PROJECTS AGENCY (ARPA-E)

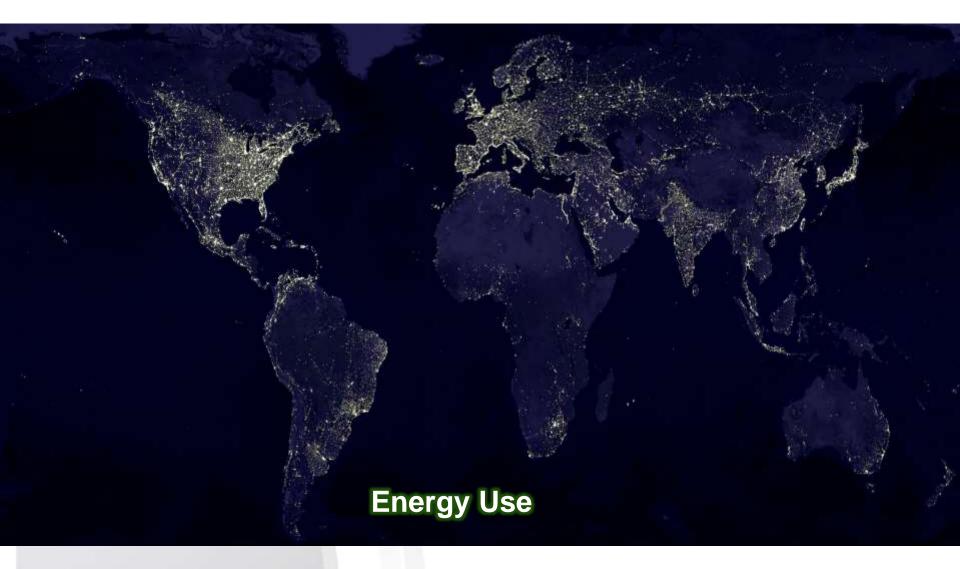
MARK JOHNSON PROGRAM DIRECTOR

NIChE Workshop on Large Scale Energy Storage NIST – Gaithersburg, MD September 16, 2010


Overview of ARPA-E as an Agency

Overview of (GRIDS) as a Program

Technology Readiness as Benchmark



Population and consumption don't always correlate

Innovation Pace And Scale Needed In Energy Technologies...

20th Century Game-Changers

Artificial Fertilizers Green Revolution Transistor Airplanes Electrification **Polio Vaccination** Antibiotics **Nuclear Energy Integrated Circuits** Fiber Optic Communication Wireless Communication Internet

Imagine all of this happening in the next 20 years...

yeal

20

Identify and support today's Haber, Bosch, Borlaug, Bardeen, Shockley, Brattain, Salk, Wright brothers, Kilby, Noyce, Gates, Jobs, Page, Brin of the energy field

100 years

ARPA-E: Applying The ARPA Model To Energy

2006 • *Rising Above the Gathering Storm* (National Academies)

• Excellence

Speed

- Openness
- Integrity

Flat and Nimble

Metrics Driven

Fulfilling ARPA-E's Mission

Reduce Energy-Related Emissions

To enhance the economic and energy security of the U.S.

Mission

To ensure U.S. technological lead in developing and deploying advanced energy technologies

> Reduce Energy Imports

Improve Energy Efficiency

 Find and fund high-risk, high-impact projects

 Identify and promote revolutionary advances in fundamental sciences

• Accelerate transformational technologies or create new technologies where none currently exist

• Translate scientific discoveries and cutting-edge inventions into technological innovations

Bridge gaps in the energy innovation pipeline

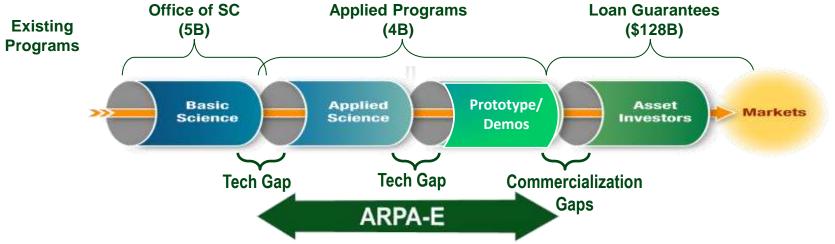
The ARPA Model: Different By Design

- ARPA-E is modeled after the first Advanced Research Projects Agency (ARPA), now known as DARPA, at the Department of Defense
- DARPA was explicitly chartered to be different, so it could do fundamentally different things than had been done by other military service research and development organizations
 - Did not have labs
 - Did not focus on existing military requirements
 - Separate from any other operational or organizational elements
- Using this model, DARPA has enjoyed 50 years of success

Revolutionary Ideas Developed By DARPA

The Internet

GPS



Stealth Technology

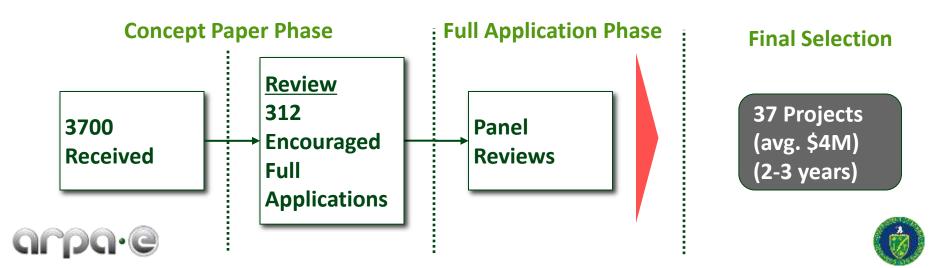
ARPA-E was created with a vision to bridge gaps in the energy innovation pipeline

what ARPA-E will do

- Seek high impact science and engineering projects
- Invest in the best ideas and teams
- Will tolerate and manage high technical risk
- Accelerate translation from science to markets
- Proof of concept and prototyping

what ARPA-E NOT will do

- Incremental improvements
- Basic research
- Long term projects or block grants
- Large-scale demonstration
 projects



FOA Round 1

- ARPA-E's First Funding Opportunity
 - Announced April 2009, Selections Oct 2009
 - 3,700 proposals to 37 project selections (\$151M)
- As ARPA-E's inaugural program, this funding opportunity was open to all energy ideas and technologies, but focused on applicants who already had well-formed research and development plans for potentially high-impact concepts or new technologies

FOA-1 Projects Span 10 Areas

FOA-2: Funding for 3 Program Areas

Batteries for Electrical Energy Storage in Transportation (BEEST)

Electrofuels

Innovative Materials & Processes for Advanced Carbon Capture Technologies (IMPAACT)

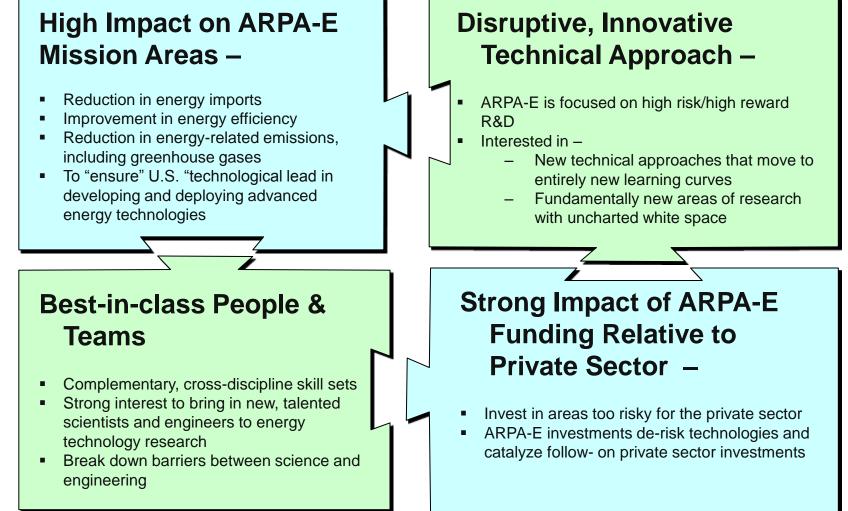
Developing a new generation of energy-dense, low-cost battery technologies for plug-in and hybrid electric vehicles	Exploring using microorganisms to harness energy and convert carbon dioxide into liquid fuels	Revolutionizing technologies that prevent carbon dioxide produced by coal-fired power plants from entering the atmosphere
Could give electric vehicles the range, performance, lifetime, and cost required to shift transportation energy from oil to the U.S. electric grid	Theoretically, this could be10 times more efficient than current approaches	Could dramatically reduce the amount of carbon dioxide emissions that contribute to global warming

FOA-3: Funding for 3 Program Areas

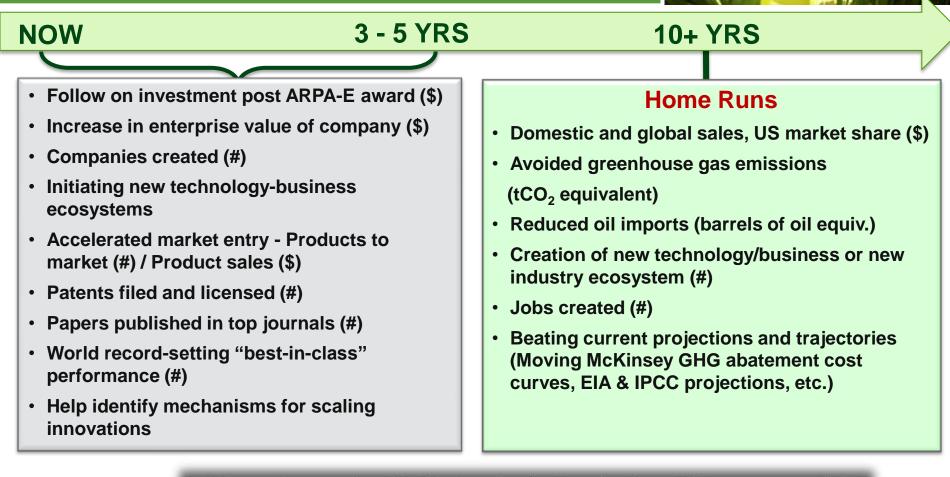

Agile Delivery of Electrical Power Technology (ADEPT)

Building Energy Efficiency Through Innovative Thermodevices (BEETIT)

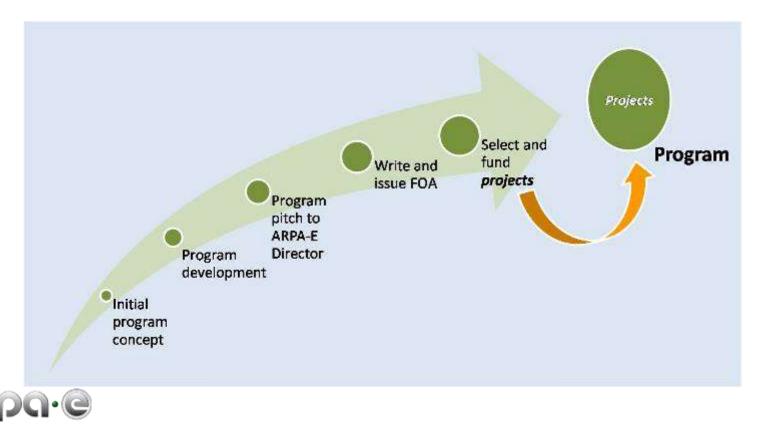
Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS)


Exploring materials that will **Developing efficient air** Developing affordable, large-scale increase performance and lower conditioners and building-cooling energy storage that enables the costs of computers and other technologies that use less energy widespread use of two key and release less greenhouse gases electronics renewable energy sources: wind and solar power **Could reduce energy consumption** These technologies will position the Could reduce emissions and by up to 30 percent – or 12 percent significantly increase the U.S. U.S. to lead the technology and of total U.S. energy consumption manufacturing of stationary technological lead in rapidly electricity storage infrastructure in emerging clean energy industries the emerging global market

Attributes Of ARPA-E Projects



ARPA-E Metrics Of Success

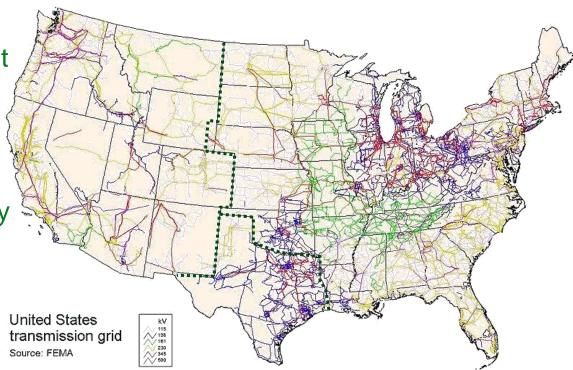

It is not expected that all selected projects will be successful, but it is expected that at least a few of them will be game-changing

Program And Project Selection

- ARPA-E funds universities, startups, established firms, and others
- ARPA-E solicits projects to fund by issuing a competitive funding opportunity announcement (FOA) for each future program area

Overview of ARPA-E as an Agency

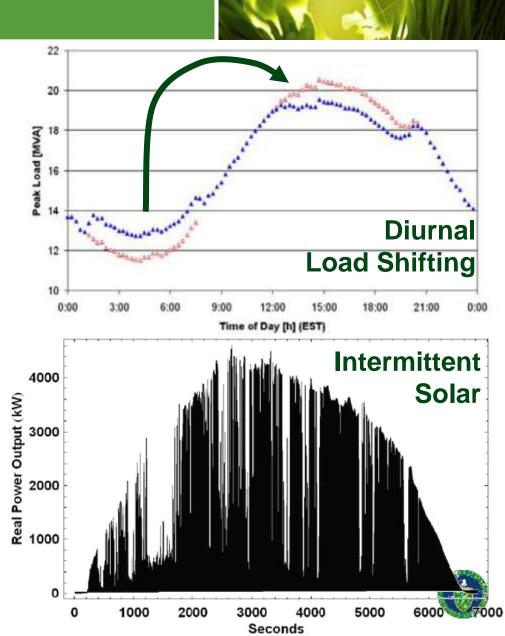
Overview of (GRIDS) as a Program


Technology Readiness as Benchmark

POWER GRID: LARGE SUPPLY CHAIN WITH NO WAREHOUSE

- Electrification: Premier
 Engineering Accomplishment
 of the 20th Century [NAE]
- Harnessing Power: #1 Challenge for 21st Century

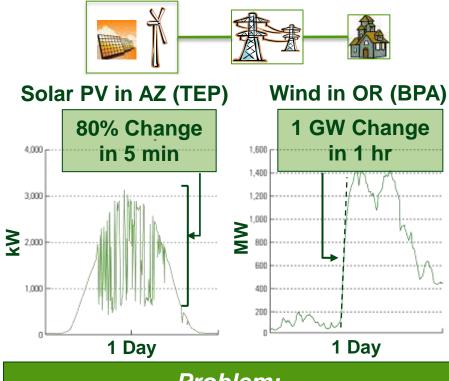
ENERGY STORAGE CAN PROVIDE A VARIETY OF BENEFITS



Generation - Supply Side	Delivery – Transmission and Distribution
Renewables Integration	T&D Network Investment Deferral
Rate Optimization	T&D Component Life Extension
Price Arbitrage / Peak Shaving	Transmission Access / Congestion Charge Management
Capacity Value	T&D Asset Utilization
Cycling Cost Management	Reliability
byening oost management	
Ancillary Services	Power Quality

STORAGE AND RENEWABLES

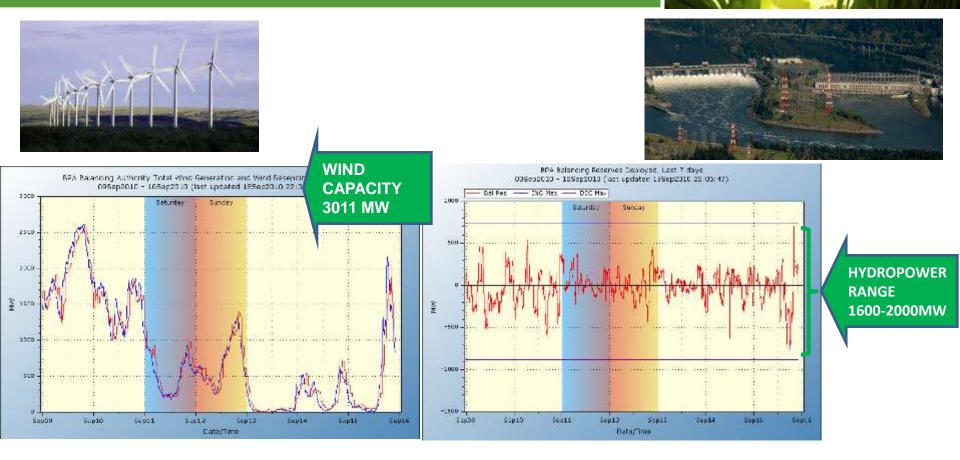
Timing Matters 1 cycle to 1 minute:

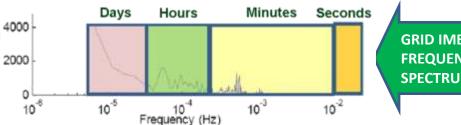

- frequency / voltage
- 1 minute to hours: power / energy

GRID-SCALE RAMPABLE INTERMITTENT DISPATCHABLE STORAGE (GRIDS)

Renewables Today

Problem: Minutes-to-Hours Changes in Power

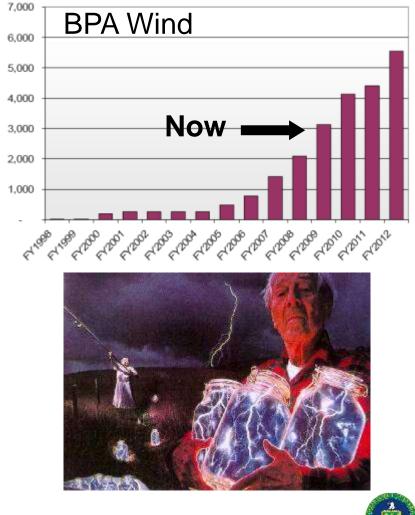



Goal: Grid storage that is dispatchable and rampable ARPA-E Focus: Transformational approaches to energy storage to enable wide deployment of renewables

Generation and storage in high renewable penetration areas

E)

GRID IMBALANCE FREQUENCY **SPECTRUM**

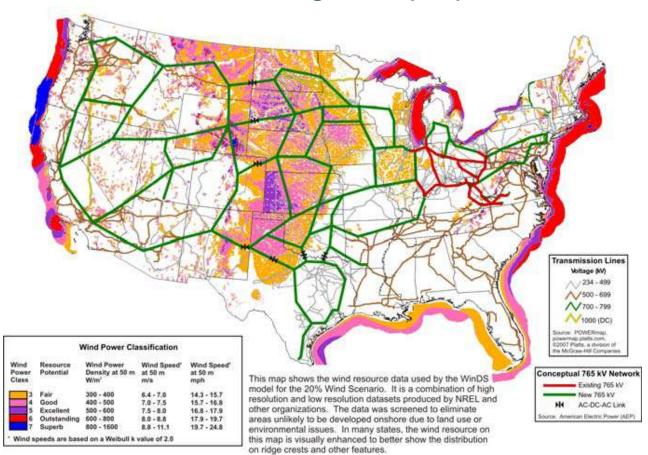


Solving the Renewable Integration Challenge

- Increase Balancing Authority Size
- Increase Transmission Capacity
- Improved Situational Awareness
 - Real Time Knowledge
 - Improved Weather Models

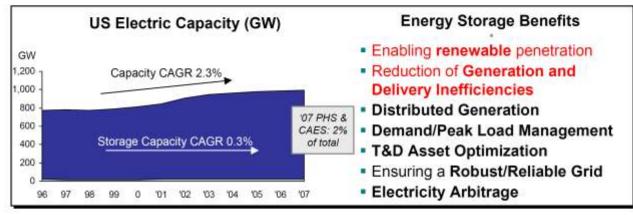
Š

- Generation Protocols
- New Storage Technologies



AWEA projects substantial traditional transmission construction is necessary to meet a 20% wind scenario, higher renewable penetration would require even more

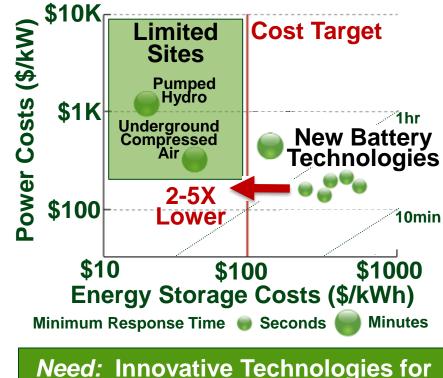
Conceptual Transmission Expansion Plan to Accommodate 400 Gigawatts (GW) of Wind Power



25 🧭

Source: AWEA, "Building a Green Power Superhighway"

TWO GRID-SCALE STORAGE BREAKOUT SESSIONS (OCT 2009): ENERGY (LONG) & POWER (SHORT)



Storage Applications	Description	Performance Metrics	Technology Examples	
Energy Management (<i>hours/</i> <i>diurnal</i>))		 Discharge Time System Power Rating Round Trip Efficiency Capital Cost Cvcle and Calendar Life 		
Applications often cause various types of p disturbances such as voltage	Faults, dynamic operations, or End	Middle-Space Requiring BOTH High Energy and Power Delivery		
	disturbances such as voltage sags, voltage swells, impulses, notches, flickers, harmonics, etc.	 Capital Cost Cycle and Calendar Life 	Ultracapacitors SMES Where can ARPA-E	

12 Source: DOE Electric Power Annual 2007, Energy Storage Association, BAH Analysis

Grid-scale Rampable Intermittent Dispatachable Storage (GRIDS)

Cost-Effective Energy Storage

Goal: Grid storage that is dispatchable and rampable Focus: Transformational approaches to energy storage to enable wide depleyment at very low cost

- Economics of Pumped Hydro, but Deployable Anywhere
- Technology Agnostic Any Stationary Energy Storage Media Electrochemical: Battery, Flow Battery, Re-FC... Electromechanical: Flywheel, aboveground CAES... Electrical: SMES, Ultracap, etc. Systems: PCS and BoP
- Two Categories: Advanced Systems Prototypes (20kW)
 ~ TRL 3/4 to TRL 6
 Proof-of-Concept Component
 ~ TRL 2/3 to TRL 5
- Connect Across US Gov't and Private Industry for subsequent exit

Metrics from FOA-0000290

Gridscale Rampable Intermittently Dispatchable Storage

PRIMARY TECHNICAL REQUIREMENTS:

Requirement **Requirement** Category Value ID Number (Units) <\$100/kWh 1.1 System Capital Cost per Unit of Rated Energy Capacity (for measured capacity at Rated Power) 1.2 Minimum Operating Time at Rated 60 minutes Power (time at Rated Power for charge and discharge) 1.3 Maximum Response Time 10 minutes (time for system to go from 0% to 100% of rated power in discharge and in charge mode) 1.4 Rated Power Capacity for Charge and $\geq 20 kW$ Discharge in Advanced System Prototypes

SECONDARY TECHNICAL TARGETS:

Target ID Number	Target Category	Description
2.1	Cycle Life (cycled at rated power between charge & discharge)	5,000 cycle minimum, defined as number of cycles at which >20% reduction in total energy/power capability occurs relative to initial rated values
2.2	Round-Trip Efficiency	80% at rated power for of charge and discharge
2.3	Maximum Dwell Time	Maximum 10 minute response time for reversal between charge and discharge
2.4	Scalability of Storage Technology for Grid-scale Application	Potential for subsequent scaling for grid- scale deployment (1-10MW). Scalability will be assessed at the power/energy ratio of the advanced systems prototype proposed.
2.5	Internal Losses	Less than 5% loss of energy in 24 hours from fully charged state.
2.6	Safety	Consistent with transmission and distribution grid deployment at unattended locations
2.7	Calendar Life	10 years, minimum

Portfolio of Projects

New Flow Battery Electrode Beacon POWER

Long Duration Flywheel

GENERAL

Fuel-Free Isothermal

Compression

United Technologies Research Center

> Advanced Flow Battery

Advanced Flow Battery

FLUIDIC ENERGY

High Power Metal-air Storage

Neutral Water Fuel Cell

BOEING

2G-HTS

SMES

High-Energy Flywheel

Rechargable Zn-MnO₂ Battery

Summary of New Scientific Opportunities in Related to Storage

Low-Cost Materials & Chemistry

Beyond Lithium Rechargeable Air Systems Surfaces and Reactions

Minimize Need for Storage

Better Modeling, Simulation and Control Algorithms

Test-bed Capabilities

From Lab-scale to Power Lines

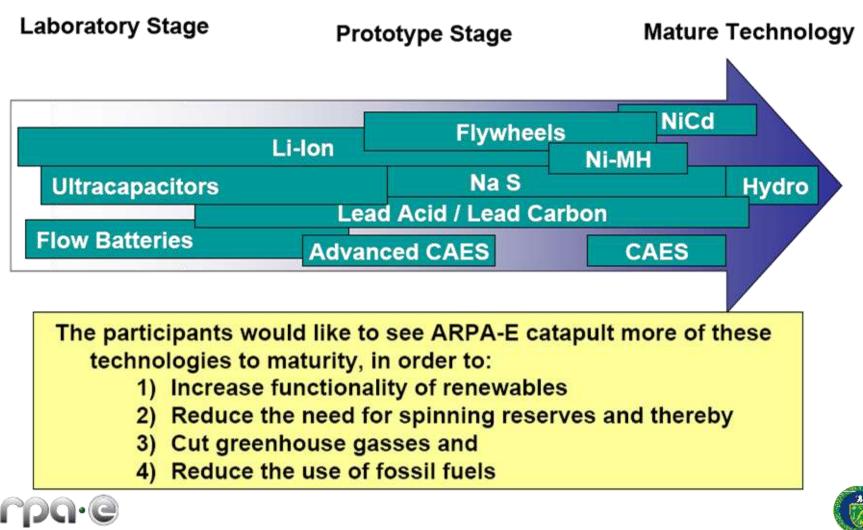
System Level Integration

Across traditional boundaries, ex. Vehicle to Grid

Overview of ARPA-E as an Agency

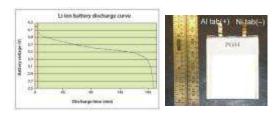
Overview of (GRIDS) as a Program

Technology Readiness as Benchmark

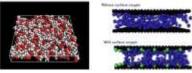


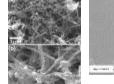
GRID-SCALE STORAGE – RANGE OF TECHNOLOGY READINESS LEVELS

Grid Storage Stages of Maturity by Technology


 TRL-0: Scientific Capability for Research, Possibly Used for Energy Storage

- Example: New surface science instrument or supercomputer
- TRL-1: Basic Science Investigation
 - Example: Validation of a new experimental method or insight or simulation of new chemistry or surface functionality
- TRL-2: Platform Science Demonstrated or Formulated
 - Example: Design, synthesis and characterization of nanostructures to study interfaces, or half-cell testing
- TRL-3: Proof-of-Concept Device Fabrication and Test
 - Example: Basic experimental testing of new battery for basic functionality


Technology Readiness Level Definitions Related to Energy Storage



Technology Readiness Level Definitions Related to Energy Storage

- TRL-4: Component Level Development on Lab Scale
 - Example: Development and testing of functional storage as proof-of-concept device, for example in coin or 18650 cell size.
- TRL-5: Component Development and Test at Prototype Scale
 - Example: Development of functional prototype storage <u>component</u> at bench scale, for instance 1-25kW power rating, and tested for functionality as system relevant hardware.

TRL-6: System / Subsystem Prototype

 Example: Development of functional prototype storage system, including power conditioning and control interface, at bench scale. For instance, system of 1-25kW power rating tested in a controlled, use relevant, environment.

SCHARGEDA

Technology Readiness Level Definitions Related to Energy Storage

- TRL-7: System Prototype Validation Testing
 - Example: Full-scale pilot-testing of a grid-scale storage system as hardware in the loop in a controlled test-bed, with capability for controlled environment testing.

 Example: Full-scale pilot-testing of a grid-scale storage system as hardware on the grid in monitored test-bed under four-season environment conditions

TRL-9: Mission Deployment Assessment

- Example: Failure analysis or field reliability testir
- of grid-deployed storage systems.

Mark Johnson, ARPA-E Program Director Mark.A.Johnson@hq.doe.gov

