

# OLED Lighting Requirements and Application Efficiency

Mike Lu, Jeannine Fisher, Peter Ngai Acuity Brands Lighting Inc.



1

#### **Company** Overview



- N.A. Market Share Leader
- Most recognized brands in the lighting industry

Mfg Facilities: 17

Sales Channels: 14

Customers: 5,000

Products: 500,000 Active Products 2,000 Product Groups

Associates: ~6,000

#### Indoor & Outdoor Lighting Products



Given the diffuse nature of OLED emission, it's best suited for indoor lighting.



OLED Lighting Design Center, Acuity Brands Lighting Inc. OLED Materials for Lighting

#### ABL OLED Luminaires — Released 2010



Glimpse™

LightFacet

Unveiled at LightFair International, Las Vegas, May 2010



OLED Lighting Design Center, Acuity Brands Lighting Inc.

OLED Materials for Lighting and Display, Jun 6-8, 2011

#### Current ABL OLED Product Roadmap



### Visual Effects of Different Types of Lighting



Copyright © 2009 Barry Huggins, www.barryhuggins.com

### What Not to Do with OLED Lighting

A 2x2 or 2x4 flat panel for light troffer replacements?



### Monolithic, sterile, uniform brightness?

#### OLED lighting design should not be sheets of OLED pasted on the ceilings.









2001: A SPACE ODYSSEY



### Kindred<sup>™</sup> — Unveiled at LightFair, May 2011





Panels: 60 lm/W panels, CRI>85, CCT 3500K,  $L_0$ =3000 cd/m<sup>2</sup>, L70 15,000 hrs @ 3000 cd/m<sup>2</sup> Luminaire: 45 panels, 3060 lm total, 58 W total, 53 lm/W including driver loss Available Q1 2012

John Su

Copyright

## Revel<sup>™</sup> — Unveiled at LightFair, May 2011



#### Winner: The Most Innovative Product of the Year, LFI 2011



Panels: 60 lm/W panels, CRI>85, CCT 3500K, L<sub>0</sub>=3000 cd/m<sup>2</sup>, L70 15,000 hrs @ 3000 cd/m<sup>2</sup>

Luminaire: 5 panel module, 314 lm total, 6.5 W, 48 lm/W including driver and optical losses

Available Q1 2012

## **Application Efficiency – Definitions**

#### Application Efficiency = Theoretical Lumens/Actual Lumens X 100%

- There are illumination requirements on different working surfaces according to, e.g., 50 fc (~500 lux) for task-area, 10 fc for non-task, and 5 fc for circulation.
  - The human eye perceives brightness logarithmically small differences in perceived brightness translates into large differences in illuminance.
- Traditional lighting design places luminaires on a regimented layout that result in a uniform illumination that satisfies the most demanding visual tasks.
  - Traditional luminaires output 3000-5000 lm each which is a lot of light relative to the pattern of actual illumination required.
- Over-lighting of less visually demanding areas means lumens are wasted.



#### Application Efficiency – Sample Office with Cubicles



Based on American National Standard Practice for Office Lighting (ANSI/IESNA RP-1-04)

OLED Materials for Lighting and Display, Jun 6-8, 2011

#### **Application Efficiency – Illuminance Patterns**



2x4' fluorescent troffer Recessed, 8' x 10' on center





Cluster of OLED panels Variable Placement Density



### Application Efficiency – Traditional Lighting Systems

| Lighting System Type                | Layout<br>Description                            | LPD<br>(W/sf) | Excessive<br>Non-task<br>Illumination | Excessive<br>Circulation<br>Illumination | Application<br>Efficiency |
|-------------------------------------|--------------------------------------------------|---------------|---------------------------------------|------------------------------------------|---------------------------|
| 2x4 fluorescent lensed troffer      | Recessed,<br>8'x10' on<br>center                 | 0.73          | 6X                                    | 8X                                       | 28%                       |
| 2x4 fluorescent parabolic troffer   | Recessed,<br>8'x10' on<br>center                 | 0.73          | 6X                                    | 8X                                       | 28%                       |
| 2x4 fluorescent advanced troffer    | Recessed,<br>8'x10' on<br>center                 | 0.71          | 6X                                    | 8X                                       | 31%                       |
| Linear fluorescent indirect/ direct | Pendant,<br>continuous<br>rows, 12' on<br>center | 0.79          | 7X                                    | 6X                                       | 27%                       |

### Application Efficiency – Newer Lighting Systems

| Lighting System Type             | Layout<br>Description            | LPD<br>(W/sf) | Excessive<br>Non-task<br>Illumination | Excessive<br>Circulation<br>Illumination | Application<br>Efficiency |
|----------------------------------|----------------------------------|---------------|---------------------------------------|------------------------------------------|---------------------------|
| 2x4 LED advanced troffer         | Recessed,<br>8'x10' on<br>center | 0.62          | 6X                                    | 8X                                       | 35%                       |
| Fluorescent low ambient/LED task | Recessed,<br>8'x10' on<br>center | 0.56-<br>0.69 | 4X                                    | 5X                                       | 36-44%                    |

### Application Efficiency – Low Luminance OLED Tiles

| Lighting System Type                                             | Layout<br>Description                                                             | LPD (W/sf)                                                  | Excessive<br>Non-task<br>Illumination | Excessive<br>Circulation<br>Illumination | Application<br>Efficiency |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------------------|---------------------------|
| Approximately<br>315 Lumens<br>Clustered tiles of OLED<br>panels | Surface<br>mounted to<br>ceiling in<br>patterns that<br>reflect task<br>locations | 0.47<br>(100 lm/W<br>panels)<br>0.78<br>(60 lm/W<br>panels) | 4X                                    | 3Х                                       | 52%                       |

- Our lighting system design using low luminance OLED panels improve application efficiency by 18-93% over existing lighting systems.
- Using this system design, OLED panels at 60 Im/W matches traditional systems using 100 Im/W fluorescent lamps in terms of LDP (lighting power density).

#### Application Efficiency – Ceiling Coverage

- Ceiling Coverage = % of ceiling area obstructed by luminaire
- There is no need to cover the whole ceiling with OLED panels.

|              | 2x4 fluorescent lensed troffer      | 10%   |
|--------------|-------------------------------------|-------|
| Baseline –   | 2x4 fluorescent parabolic troffer   | 10%   |
| Systems      | 2x4 fluorescent advanced troffer    | 10%   |
|              | Linear fluorescent indirect/ direct | 4%    |
| Advanced     | 2x4 LED advanced troffer            | 10%   |
| Alternatives | Fluorescent low ambient/LED task    | 4-10% |
| OLED         | Clustered tiles of OLED panels      | 7%    |

#### Other Panel Requirements – Emission Profile



- Exact luminaire shape unimportant
- Calculation based on a panel emission that is substantially Lambertian

- Application efficiency is a function of intensity distribution but the ability to vary placement density is more important.
- Substantially Lambertian emission provides diffuse lighting that is beneficial to visual comfort.
- Strong microcavity effects can produce high intensity along the normal direction but angular dependence of color is a concern.

#### Other Panel Requirements – Color Rendition



- CRI (R<sub>a</sub>) is the average from the first 8 reflectance standards.
- R9 is specifically for rendering red.
- Need both high R<sub>a</sub> and R9 for good color rendering.



- Need a saturated red emitter with good efficiency.
- Red emitter needs to have narrow line width to avoid losing too much efficacy due to  $V(\lambda)$ .

#### **Realistic Luminaire Performance and Pricing**

- To provide the majority of illumination in a space, an over-head luminaire needs to deliver 3000-5000 usable lumens.
- At 3000 cd/m<sup>2</sup>, or 10,000 lm/m<sup>2</sup>, the total panel area required is 0.3 0.5 m<sup>2</sup>, equivalent to 15-25 6" panels.
- Commodity grade fluorescent luminaires retail for ~\$100 each (\$20/klm).
- The most expensive, mass produced, luminaires command a contractor net pricing of ~ \$100/klm → \$500 for a 5000 lm luminaire.
- DOE manufacturing cost projection (p. 38 of manufacturing roadmap): \$300/m<sup>2</sup> in 2013 → \$7.5/6" panel. Assuming a selling price of \$10/panel, total panel cost to a luminaire manufacturer is \$150-250.
- Are there any panel suppliers ready to provide 6" panels (60-80 lm/W, LT 70>15 khrs @ 3000 cd/m<sup>2</sup>) for \$10 each in 2013?

#### **Critical Factors in Panel Cost**

| ble 7. Manufacturing Road           | 7. Manufacturing Roadmap for Sheet Processing of OLED Lighting Panels |        |         |         |  |  |
|-------------------------------------|-----------------------------------------------------------------------|--------|---------|---------|--|--|
| Stage                               | Units                                                                 | Year   |         |         |  |  |
| Junge                               |                                                                       | 2011   | 2013    | 2015    |  |  |
| Light output                        | lm/m <sup>2</sup>                                                     | 3000   | 6000    | 10,000  |  |  |
| Substrate area <sup>16</sup>        | m <sup>2</sup>                                                        | 0.2    | 0.67    | 2.7     |  |  |
| Cycle Time                          | Sec                                                                   | 180    | (120)   | 60      |  |  |
| Yield                               | %                                                                     | 0.75   | 0.9     | 0.95    |  |  |
| Annual Uptime                       | Hours                                                                 | 6000   | 6900    | 7500    |  |  |
| Annual Production                   | m <sup>2</sup>                                                        | 14,000 | 100,000 | 925,000 |  |  |
| Investment <sup>17</sup>            | \$M                                                                   | 30     | 80      | 150     |  |  |
| Direct Labor                        | staff/shift                                                           | 7      | 8       | 10      |  |  |
| Indirect Labor                      | staff/shift                                                           | 15     | 15      | 15      |  |  |
| Annual Labor<br>Costs <sup>18</sup> | \$M                                                                   | 4.4    | 4.6     | 5       |  |  |
| Other Operations                    | \$M                                                                   | 1      | 2       | 4       |  |  |

| Table 9. I | Projected Costs of OLEI         | ) Lightii         | ng Panels (sheet | t processed) |      |  |
|------------|---------------------------------|-------------------|------------------|--------------|------|--|
|            | Stage                           | Units             | Year             |              |      |  |
|            |                                 |                   | 2011             | 2013         | 2015 |  |
|            | Depreciation <sup>19</sup>      | $/m^2$            | 420              | 160          | 30   |  |
|            | Labor                           | $/m^2$            | 305              | 45           | 5    |  |
|            | Other operations                | \$/m <sup>2</sup> | 70               | 20           | 4    |  |
|            | Organic Materials <sup>20</sup> | \$/m <sup>2</sup> | 30               | 15           | 10   |  |
|            | Substrate                       | \$/m <sup>2</sup> | 6                | 6            | 6    |  |
|            | Electrodes                      | $/m^2$            | 20               | 15           | 10   |  |
|            | Light extraction                | \$/m <sup>2</sup> | 20               | 15           | 10   |  |
|            | Encapsulation                   | \$/m <sup>2</sup> | 10               | 8            | 5    |  |
|            | Other materials                 | \$/m <sup>2</sup> | 20               | 15           | 10   |  |
|            | Total cost                      | $/m^2$            | 900              | 300          | 90   |  |
|            | Total cost                      | \$/klm            | 300              | 50           | 9    |  |

Need shorter TACT to reduce depreciation.

- Area, linear sources in parallel, "hot wall" configuration
- Need low cost substrates with integrated 2+X light extraction.
- Need low cost, robust encapsulation

 $\bullet$ 

 $\bullet$ 

ullet

- Not necessarily monolithic
- Recessed glass lids are expensive

OLED Lighting Design Center, Acuity Brands Lighting Inc.

#### Mind the LEDs



GE Lighting LED Edgelighting – Suspended 70 lm/W+ 50,000 hrs CRI 80+

| 1 |  |
|---|--|

GE Lighting LED Edgelighting – Linear 75 lm/W+ 50,000 hrs CRI 85+ - 90+

The *Rambus* vision LEDs Magazine Newsletter, May 25, 2011



#### Conclusions

- We anticipate launching commercial OLED products in 2012 at 60 Im/W.
- With 60 Im/W OLED panels, it is possible to design a system with comparable LPD to traditional systems with 100 Im/W fluorescent lamps due to higher application efficiency.
- OLED panel emission that is substantially Lambertian can still enhance application efficiency with acceptable vertical illumination.
- Color rendition is an important measure of color quality. Rendition of saturated red colors (R9) requires deep red emitters with narrow line width.
- There is stiff competition from edge-lit LEDs. Cost/performance remains an issue. The OLED industry needs to relentlessly drive down cost to remain a relevant SSL technology.

#### Acknowledgement

Work at the OLDC was partially funded by DOE contract DE-EE0004534.

#### Visit <u>WWW.AcuityBrands.com/oled</u> for more information.