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Introduction - targets
Properties Target ITO TOF ZnO:Dopant

ρ (Ω cm x10-4) 22--6.0    6.0    22--33 3.53.5--55 2.02.0--33

Etch Resolution (micron) 5 MN poor MN

Surface roughness (nm RMS) 2-10 1-5 4-20 3-6

Maximum peak to valley (Zmax, nm)  30-40 30          >50            30-60

ϕB (eV) 4.5-5      4.7 4.9 4.3-5.1

Transmittance (%) 80-90 > 85 > 80          85-92

Advantages of doped ZnO

Indium-free 
Superior Economics
US Sustainability – not a precious metal dependent on China export policy

High transmission
No blue absorption relative to Indium based TCOs



Introduction - Comparison of common TCOs

• Resistivities of 1.38 to 3.60 x 10-4 Ωcm are feasible
• Doped ZnO and ITO showed the lowest resistivity
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• 2D mapping of
– Sheet resistance
– Thickness

• Electron concentration
– Electron mobility
– Effective mass
– RMS
– Zmax

Homogeneity of DZO - Methodology

Sheet resistance, Ω/sqThickness, nm RMS roughness, nm Zmax, nm
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Electrical Properties - Electron concentration & mobility

• ITO electrical properties strongly depend on annealing conditions
– As sputtered [Electron] and mobility of 6x1020 cm-3 and 15 cm2/Vs
– [Electron] increases to 2x1021 cm-3 with annealing

• Thick layers of DZO have similar electrical properties 
– Unintentially doped ZnO mobility = 50-55 cm2/Vs
– Doping reduces mobility to 12-30 cm2/Vs
– Electron concentration varies from 0.6 to 1.6 x 1021 cm-3
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Electrical Properties - Resistivity

• Resistivity homogeneity ± 3 % over 6 x 6 inch surface. 
– Temperature gradients likely responsible for higher resistivity at edges
– Lab coater uses a heating block versus even heat distributed oven

• APCVD deposited DZO resistivity correlates with film thickness
– This correlation can be minimized by introduction of nucleation layer
– This correlation can also be minimized by dopant type
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Depth Profiling – DZO texture coefficients

• Grazing angle X-ray intensities were corrected for thickness:

• The texture coefficient is
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→ (002) Orientation is predominant at the glass/film interface
→ (103) Becomes predominant orientation after 300 nm
→ Crystallinity of D1ZO and D2ZO is similar
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Depth Profiling - Crystallinity of doped ZnO by SAD

• The cross-section SAD show mostly polycrystalline orientation up to 500 nm
• The grains are rotated by 10-15 degrees with respect to each other

• (002), (103), (102) and (101) are found around 500 nm
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Depth Profiling - Pole figures for the bulk doped ZnO

• Orientation factors (002) for D1ZO = 0.856; D2ZO = 0.872 

– (103) is 33±2° off the sample normal (002)

– This angle corresponds to the 31.66° existing between (002) and (103)

– The broad (103) signal increases towards the surface normal

• ���� As film thickness increases (103) aligns itself to the normal

D1ZO(103)

D2ZO (103)

D1ZO(002)

D2ZO(002)

Alpha, degrees Alpha, degrees

Alpha, degrees Alpha, degrees

In
te

ns
ity

, a
rb

. u
ni

ts
In

te
ns

ity
, a

rb
. u

ni
ts

In
te

ns
ity

, a
rb

. u
ni

ts
In

te
ns

ity
, a

rb
. u

ni
ts



Depth Profiling - Crystalline sizes

• The average grain size was calculated from grazing angle x-ray patterns (FWHM were corrected for IB): 
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• D1ZO has 2x smaller grain size relative to D2ZO
• Grain size decreases towards substrate interface
• Slope of mobility increase toward air:TCO interface
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Current probe XY-profiles (ITO)
topography
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Current probe XY-profiles (ZnO)
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Surface roughness

• Deposition optimization – 50 % improvement
• HIL  and p-doped layer as planarization tool
• Polishing (below RMS = 1 nm)
• Deposition of oxides as a planarization tool 
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Surface Roughness - OLED Process Testing

2.2 - 2.4 nmCleaned and fully 
processed substrate

1.4 nmPolished TCO and 
cleaned substrate

3.0 - 3.3 nm
Acetone & propanol
cleaning (each 5 min. 
ultrasonic bath)

3.6 - 3.8 nmWithout cleaning 

rmsZnO substrates

• Cleaning done on- & off-line 

• Solvent and surfactant compatibility identified 

• Surface roughness decreased on cleaning

• No evidence of etching - cleaning surface 
particles

• Patterning process identified

As is Solvent cleaned

1. 504 hr stability test  60 rh%:80oC both on substrate & metalized
� D1ZnO passes in covered areas, but exposed regions have electrical deterioration

– not a knock out

� D2ZnO passes all around, but is more expensive

2. Process compatibility



Optical properties

• Maximum transmittance of doped ZnO (150 nm) plus glass substrate was 91 %

• Transmittance of DZO was slightly better than ITO for the similar thickness thin  
films (< 200 nm) 
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Optical properties - N and k as a function of doping

• Dispersion curves for both ZnO and ITO are dependent on doping level

• Dispersion curves were utilized in development of the undercoat
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Light Out-coupling - Refractive index matching

• Undercoat technology using APCVD grown layers was developed 

• Peak reflected interference fringe for DZO � 20% to 13-14%

• Flat transmittance curves with suppressed Fabry-Perrot interference 
are obtained using undercoats
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Light Out-coupling – Approach 1
Undercoat for Optical Extraction

• Optical UC
– Improves transmission 2-5%
– Improves EQE 9-11% 

6”X6” Substrates 
~350 nm no 
undercoat

6”x6” substrate 
~350 nm with 
undercoat
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Light Out-coupling - Approach 2
GZO on patterned glass substrates

• Average 3 % improvement in overall transmission was observed for
patterned substrate backside

• An overall flat transmittance curve was observed for the patterned front 
side of the substrate 
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Light Out-coupling Approach 3 
Light extraction

High-low-high RI  (Nb 2O5/SiO2/Nb2O5/DZO)
– Enhancement emission amplitude of 2.6x (theory) and  

2.1x (experimental) at 475 nm
– Effect falls off at >10 0 and very tight process window

– Color shift to deeper Blue

OLED Devices and analyses done at Philips Lighting



OLED Devices- 5x5 mm2 device made on 6” substrates

Results comparable to ITO for small pixel size (5mm x 5mm)

OLED Devices and analyses done at Philips Lighting



OLED Devices - scale-up to 30x40 mm2

Results comparable with ITO for larger OLED design

OLED Devices and analyses done at Philips Lighting



OLED Devices  - 152x152 mm2 full substrate

• Processing is simplified in serial construction
• More work is needed for Grid construction
• Demonstrate DZO can be used as TCO

ITO DZO

OLED Devices and analyses done at Philips Lighting



Conclusions
• APCVD prepared doped ZnO is a viable commercial alternative to ITO

– Demonstrated 5x5, 30x40 and 152x152 mm2 devices

• Dopants and process conditions are critical to homogeneity and opto-
electronic properties

• Projected cost for DZO are consistent with DOE SSL 5-year plan 
targets

4.6-5.0

4.8-5.0

Wf

(eV)

Yes2(20)17-20Yes> 85%ITO

No4(30)17-20No> 90%DZO

Acid 
resistance

RMS 
(Zmaxmax)

SR Ion 
Migration

Trans.

(%)

• Disclaimer; The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and 
methods of use of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising 
from any reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR 
ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The user should thoroughly test 
any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an 
inducement to infringe any patent, and the user is advised to take appropriate steps to be sure that any proposed action will not result in patent infringement. 

• © 2010 Arkema Inc 


