

Materials and Architectural Development in White OLEDs

Marina Kondakova

New Industrial Chemistry and Engineering Workshop OLED Materials for Lighting and Display 6-8 June 2011

Outline:

- □ Introduction to white OLED technology
- Architectures and materials for phosphorescent OLEDs (PHOLEDs): hosts, architectures, performance challenges
- □ High efficiency, multi-stacked hybrid white OLEDs
- □ Single-stack hybrid white OLEDs:
 - Harvesting white OLEDs— a route to efficient white devices

White OLED technology

White OLED is critical and scalable technology for enabling energy-efficient displays and SSL

Kido et al, Appl.Phys.Lett., 1994

Reineke et al, Nature, 2009

Synergy between WOLED for displays and SSL

Source: Hatwar et al., SID'10

Color temperature is adjusted by manipulation of the architecture and material formulation

Kodak SID 2009

Various approaches to WOLED development

- 1-stack or tandem structures
- Vacuum deposited (VTE) or solution processed hybrid approach is possible
- **GROB (FMM)**, white with CF, printing, etc

Source: Komoda, SID'10 and SID'11

Each architecture has its advantages and performance trade-off

OLED for display – white with color filters

 High production technology: No mask-related defects Glass size: > Gen 6 In line process

RGBW 4-pixel architectures – lower power consumption
 3D friendly

Source: LG Display, SID'10 Young, Inf.Display, 26(10), 2010

OLED lighting:

- Large-area diffuse light source:
 - Less glare
 - Less fixture loss
 - High luminaire efficacy, lower power usage
- Thin, flat, lightweight
- Fast switch-on; fully dimmable
- Wide range of colors possible
- "Green" technology no mercury
- Possibility for features:
 - ✓ Flexible
 - ✓ Transparent
 - Color tunable

Source: Levemore, Inf.Display, 26(10), 2010

OLED Materials for Lighting and Display, CCR workshop, June 2011

Efficiency requirements for OLED panels

DOE projections are based on results obtained with panels

Metric	2010	2012	2015	2020
Panel efficacy, Im/W	62	86	125	168
LT ₇₀ , Khours	10	25	50	100
Lum. emittance, Im/m ²	3.000	6.000	10.000	10.000

CRI>85, 2580-3710 K Panel size of at least 200 cm²

Source:MYPP, updated May 2011, table 5.8 http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf

Efficiency targets cannot be met without use of phosphorescent OLED technology

OLED Materials for Lighting and Display, CCR workshop, June 2011

200

Hybrid White OLED architecture

Hybrid = Both fluorescent and phosphorescent emitters in same OLED

Source: Tyan, DOE Workshop 2010

OlEDWorkz

Outline:

□ Introduction to white OLED technology

- Architectures and materials for phosphorescent OLEDs (PHOLEDs): hosts, architectures, performance challenges
- □ High efficiency, multi-stacked hybrid white OLEDs
- □ Single-stack hybrid white OLEDs:
 - Harvesting white OLEDs— a route to efficient white devices

Phosphorescent host requirements

1. Triplet energy (E_T)

Color	HOMO-LUMO, eV	E _s , eV	E _T , eV
Red	2.8	2.7	2.1
Green	3.4	3.2	2.5
Blue	3.7	3.4	2.7

- ✓ Energy transfer from both the host singlet and triplet excited states to the dopant triplet excited state
- \checkmark Direct trapping of charge on the dopant (more efficient devices)
- 2. Charge transporting properties
- 3. HOMO(IP)/LUMO(EA) alignment of host(s) with ETL & HTL
- 4. Chemical and thermal ($T_s < 500^{\circ}C$, $T_m > 100^{\circ}C$) stability

Difficult to meet criteria with the same material!

"Ideal" OLED device – Low Voltage, High Efficiency

- Barrier-less injection/transport of electrons and holes ($V_{bi} > 2.0-2.2V$)
- High mobility transport materials
- High mobility host
- Dopant trapping (direct excitation)
- No unnecessarily large bandgaps (including transport materials)

Architecture – Host type

1. Single (Bipolar, Unipolar) Host

Large barrier to charge injection at HTL and/or ETL interface Recombination at interfaces

2. Inert matrix host

UGH type, phosphorescent dopant carries charges Usually high-voltage devices

3. Mixed host

Charge transport:

Single host : high energy materials

High energy carbazoles (hosts):

- 1. L. Xiao et al., Adv.Mat., 21, 1271, 2009
- 2. S. Su et al., Chem.Mater., 28, 1691, 2008
- 3. D. Tanaka et al., Jpn.J.Appl.Phys, 46, L117, 2007
- 4. N.Chopra et al., Appl.Phys.Lett., 93, 143307, 2008

2.98 eV

 $\mu \sim 10^{-5} \text{ cm}^2/\text{Vs}$

Single unipolar host

Dopant (10%) transports electrons 610 nm, (0.63, 0.37)

At 100 cd/m² : 20%EQE, 32 cd/A with BAIq

 LT_{50} =600 h at 6000 nits (5% dopant) LT_{50} =1600 h at 6000 nits (15% dopant)

R. Meerheim et al, J.Appl.Phys., 104, 014510, 2008

Host type – Inert matrix

Triplet energy : 3.5 eV HOMO : -7.2 eV LUMO : -2.8 eV

X.Ren et al., Chem.Mater., 2004

FIr6 transports charges in the EML Host is not electrically excited

11.6% EQE, 13.9 lm/W, (0.16, 0.26)

R.Holmes et al, Appl.Phys.Lett.,83, 3818,2003

Xiao et al, Adv.Mater., 21, 1271, 2009

Mixed host :

- Consists of hole (h⁺)- and electron (e⁻)-transporting components;
- Because e⁻ and h⁺ are carried by different materials, HOMO/LUMO levels can be adjusted independent of triplet energy;
- Improves charge injection and transport;
- Eliminates/reduces internal charge accumulations at/near interfaces;
- Results in improved device performance.

Model mixed host materials for green and blue PHOLEDs: TPBI+TCTA

Kondakova et al, J.App.Phys., 104, 094501, 2008

Mixed TPBI+TCTA vs neat CBP host

Voltage reduced by ~2V, Power efficiency increased by 30%

(E): NPB (85nm) | TCTA (10nm) | TPBI+TCTA+ 10% lr(5'-ph-ppy)₃ (35nm) | TPBI (10nm) | Alq (40nm)

Kondakova et al, J.App.Phys., 104, 094501, 2008

Replacing TPBI with stable ET co-host

NPB | TCTA | ET co-host + 30%TCTA + 10%lr(5'-ph-ppy)₃ | HBL | Alq | LiF | Al

Inset data @1000 nits

SBFK

Ir(5'-ph-ppy)₃

Co-host	HBL	T50 @1000 nits
TPBI	TPBI	500
SBFK	TPBI	5300
SBFK	SBFK	6500

Kondakova et al, J.App.Phys., 104, 094501, 2008 19

Hole/exciton blocking materials (HBM)

High energy electron transport materials E_{τ} HBM > E_{τ} emitter

BCP E_T= 2.5 eV t₅₀ <700 h BAlq E_T= 2.3 eV t₅₀ <10,000 h

R. Kwong, Appl.Phys.Lett., 81,162, 2002

V.Adamovich, Org. Electron., 4 (2003), 77.

Mixed-host PHOLED does not require HBM

- Transport properties of EML in mixed-host devices can be easily adjusted
- Triplet energy of HBM is/can be made irrelevant
- BL selection is based on electron injection (LUMO) and transport properties

EDWorks

OLED Materials for Lighting and Display, CCR workshop, June 2011

Voltage reduction in green PHOLEDs: no HBL architecture

NPB | TCTA | TPBI+TCTA+ $Ir(ppy)_3$ | ETL | EIL | LIF | AI

@1000 nits

ETLIEIL	Volts	lm/W	EQE, %	
Alq	5.0	35.6	16.2	
TPBI Alq	5.5	40.3	18.9	Better confinement of triplet exitons
TBADN Alq	4.1	48.4	18.8	Lower e ⁻ injection barrier
TBADN Bphen	3.2	64.0	19.1	Lower e ⁻ injection barrier, better e ⁻ transport

2.3 V reduction at ~ 2 mA/cm² ~3V at 20 mA/cm²

Similar voltage reduction for blue PHOLEDs

Kondakova et al, SID'07 Kondakova et al, J.App.Phys., 104, 094501, 2008

Outline:

- □ Introduction to white OLED technology
- Architectures and materials for phosphorescent OLEDs (PHOLEDs): hosts, architectures, performance challenges
- □ High efficiency, multi-stacked hybrid white OLEDs
- □ Single-stack hybrid white OLEDs:
 - Harvesting white OLEDs— a route to efficient white devices

Performance of hybrid tandem WOLED for SSL

Device type	V	cd/A	EQE%	CIEx	CIEy	lm/W	Half life, T50 @1000 cd/m2 (h)
Device 12: (EK9 blue dopant in stack 1 and EK532 yellow dopant in stack 2)	6.5	48.7	28.4	0.43	0.32	23.6	125,000
Device 13: (New blue dopant in stack 1 and EK532 yellow dopant in stack 2)	6.5	51.3	30.6	0.40	0.30	24.7	72,000

No outcoupling enhancement

This work was carried out at Eastman Kodak Company prior 12/2009 Hatwar et al., SID'10

Performance of 15 x 15 cm OLED SSL lighting panel using hybrid tandem

Performance of a 15 cm \times 15 cm OLED lighting panel and a 2.7 cm² OLED device

v	cd/m ²	cd/A	CIEx	CIEy	lm/W	QE %
6.2	941	94.1	0.437	0.410	48.0	43.3
6.4	930	93	0.435	0.407	45.7	45.2
	V 6.2 6.4	V cd/m² 6.2 941 6.4 930	V cd/m² cd/A 6.2 941 94.1 6.4 930 93	V cd/m² cd/A CIEx 6.2 941 94.1 0.437 6.4 930 93 0.435	V cd/m² cd/A CIEx CIEy 6.2 941 94.1 0.437 0.410 6.4 930 93 0.435 0.407	V cd/m² cd/A CIEx CIEy Im/W 6.2 941 94.1 0.437 0.410 48.0 6.4 930 93 0.435 0.407 45.7

With external extraction layer

This work was carried out at Eastman Kodak Company prior 12/2009 Hatwar et al., SID'10

Outline:

- □ Introduction to white OLED technology
- Architectures and materials for phosphorescent OLEDs (PHOLEDs): hosts, architectures, performance challenges
- □ High efficiency, multi-stacked hybrid white OLEDs
- Single-stack hybrid white OLEDs:
 Harvesting white OLEDs- a route to efficient white devices

State-of-the-art white OLEDs

Fluorescent white OLED single stack:

37 Im/W, 16% EQE, (0.47,0.42), LT₅₀= 15Kh, with extraction layer
 20.5 Im/W, 8.5% EQE, w/o light extraction
 Novaled (Murano, SID'11)
 22 Im/W, 10.7% EQE, (0.41,0.44) at 10 mA/cm²; LT₅₀= 86Kh
 IDK (Kawamura,SID'10)

Phosphorescent emission-based white OLED single stack:

72 Im/W, 42% EQE, (0.46,0.42),CRI=86, 2580K, LT₇₀=55 Kh (outcoupling 2.12x) *UDC (Levermore, SID'11)* 80 Im/W, (0.43,0.44), CRI=83, LT₅₀=10 Kh with extraction layer *Panasonic (Komoda, SID'11)*

Multi-stack hybrid OLED:

 66.4 Im/W, (0.39, 0.39), CRI=85, 3691K with internal extraction layer (2.9X) *Kodak (Tyan, SID'09*)
 56 Im/W, (0.42, 0,41), CRI=91, 3200K, LT₅₀=150 Kh with internal extr. layer *Panasonic (Komoda, SID'11)* 63.6 Im/W, (0.46, 0.40), CRI=78, 2568K, LT₅₀=55 Kh with internal extr layer (2.05x) *Philips (Loebl, SID'11)*

Phosphorescent emitters

PHOLED Performance (at 1000 cd/m²)	1931 CIE Color Coordinates	Luminous Efficiency (cd/A)	Operating LT 95%	Lifetime (hrs) LT 50%
DEEP RED	(0.69, 0.31)	17	14,000	250,000
RED	(0.66, 0.34)	24	25,000	600,000
RED	(0.64, 0.36)	30	50,000	900,000
GREEN-YELLOW	(0.46, 0.53)	72	70,000	1,400,000
GREEN	(0.34, 0.62)	78	18,000	400,000
HIGHT BLUE	(0.18, 0.42)	47	600	20,000

Source: <u>www.universaldisplay.com</u>

UNIVERSAL DISPLAY CORPORATION

http://www.universaldisplay.com/default.asp?contentID=604

Stable deep blue phosphorescent emitter is challenge

Company	Year	Cd/A	EQE, %	CIE x,y	Max, nm	LT ₅₀ , h	LT reported
UDC	2006	21	11	0.16, 0.29		3 K	500 cd/m^2
	(oled-info 1/12/2006)						
Konica-	SID'07	42	17		472	16 K	300 cd/m^2
Minolta							
UDC	SID'11	47	20	0.18, 0.42	474	20 K	1000 cd/m^2
UDC	SID'11	69	31		474		

University of Southern California Princeton University Army Research Laboratory

Deep-blue phosphorescent emitters, LT not practical

Blue fluorescent emitters status

Demonstrated superior lifetime

Emitter / Company	Cd/A	EQE, %	V	LT ₅₀ , h	CIE x,y	LT ₅₀ at cd/m ²	Refs
BD-5, IDK	8.4			50K	0.13, 0.21	1000	SID'08
EK 9, Kodak	8.6	6.3	4.4	10K	0.14, 0.18	1000	SID'08
Dupont	4.7		5.1	39K	0.14, 0.11	1000	SID'10
Dupont	3.2		5.1	9K	0.14, 0.08	1000	SID'10
BD-6, IDK	9.0	8.7	4.0	11K	0.14, 0.12	1000	SID'10
BD-6 with EEL1, IDK	9.9	9.5	4.0	11K	0.14, 0.12	1000	SID'10
CDT	9.2		4.5	15K	0.14, 0.14	1000	SID'11
BD-7, IDK	5.5	7.1	3.9	11K	0.14, 0.08	500	SID'11
BD-7 with EEL2, IDK	6.5	8.7	3.8	9K	0.14, 0.078	500	SID'11

Hybrid White OLED architecture

Hybrid = Both fluorescent and phosphorescent emitters in same OLED

Single stack hybrid white devices

Hybrid = Both fluorescent and phosphorescent emitters in same OLED

Exciton-sharing hybrid device:

- Phosphorescent green and red
- Fluorescent blue (limited to 25% IQE)
- Recombination takes place in all light emitting layers
- Waste 75% of blue excitons
- Efficiency is high compared to all-fluorescent devices
- Lower voltage compared to multi-stacked OLED

Challenges: color change with time

Single-stack harvesting hybrid white devices

Harvesting: partitioning of singlets and triplets

Harvesting hybrid device:

- Phosphorescent green and red
- Fluorescent blue dopant

Y.Sun et al., Nature 440, 908 (2006)

- Recombination in fluorescent EML only, forms singlets and triplets
- Singlets harvested immediately by blue fluorescent dopant
- "Blue" triplets diffuse (Dexter transfer) to triplet EML(s) where harvested by phosphorescent dopant(s)
- □ In principle: 100% IQE?

Harvesting requires complex materials/architecture design

OLED Materials for Lighting and Display, CCR workshop, June 2011

Blue fluorescent emitter

Triplet energy of emitter is a critical parameter to enable triplet diffusion mechanism

E_T: FL dopant <u>></u> FL host <u>></u>spacer

 E_{T} : FL host (CBP) ~ FL dopant (MQAB) \geq spacer (Ga(pyimd)₃)

Kondakova et al, J.Appl.Phys., 107, 014515, 2010

E_T=2.30eV G. Schwartz et al., Adv.Func.Mater.,2009,19, 1319

4P-NPD

OLED Materials for Lighting and Display, CCR workshop, June 2011

B|Y Hybrid OLED, maximized for blue emission

At 1000 cd/m² (3.2 mA/cm²): 13.6% EQE, 34.8 cd/A, 3.8 V, 30.1 lm/W, (0.32, 0.36)

Spacer prevents Förster transfer ${}^{1}\Psi$, allows Dexter transfer ${}^{3}\Psi$

Kondakova et al, SID'08 Kondakova et al, J.Appl.Phys., 107, 014515, 2010

35

Bphen

Ga(pyimd)₃

EDWork

OLED Materials for Lighting and Display, CCR workshop, June 2011

lr(ppy)₂pc

Efficiency analysis of Blue and Yellow emission components in B|Y hybrid OLED

Proof of Harvesting

Very efficient fluorescence Fluorescence remains Phosphorescence appears

Fluorescence decreases faster at small currents (0.01-10 mA/cm²)

Kondakova et al, SID'08

Time-resolved electroluminescence of B|Y Hybrid Proof of harvesting

Voltage pulse 2 μ s +5.4 V, -10 V

- ~1 μs delay (spacer of 8 nm) between maxima of blue and yellow emission after voltage pulse
- Singlet and triplet excitons harvested separately \rightarrow triplet exciton diffusion

Kondakova et al, SID'08 Kondakova et al, J.Appl.Phys., 107, 014515, 2010

Harvesting hybrid white OLEDs

Blue|Yellow, Blue|Red, B|G|R, and stacked (BR||BG) hybrid devices operating by harvesting mechanism (triplet exciton diffusion) were demonstrated

Device	% EQE	V	Lm/W	CIE x,y
BY	13.6	3.8	30.1	0.317, 0.364
RGB	12.6	4.0	21.4	0.317, 0.317
BR BG	16.9	9.4	9.9	0.330, 0.329

Mechanism involving triplet exciton diffusion was evidenced by:

- ✓ Efficiency analysis of fluorescent and phosphorescent EL
- Time-resolved EL
- Magnetic field effect on EL
- Electrically-detected EPR

- Hybrid white devices can bridge the performance gap between fluorescent and phosphorescent OLEDs achieving high power efficiency and stability;
- Phosphorescent OLED devices require complex architecture of layers; the understanding of material properties is critical for optimizing the device performance;
- Single-stack white OLEDs provide simpler structures, higher power efficacy compared to multi-stack OLEDs;
- Efficient white-emitting hybrid devices operating by harvesting mechanism (exciton diffusion) have been demonstrated, the triplet diffusion mechanism was evidenced by various physical methods.

OLEDWorks LLC

Consulting on OLED and Organic Electronics Manufacturing OLED Lighting Panels Building Strategic Relationships

www.oledworks.com