Challenges for OLED Deposition by Vacuum Thermal Evaporation

D. W. Gotthold, M. O’Steen, W. Luhman, S. Priddy, C. Counts, C. Roth
June 7, 2011
Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco’s Source Technology
- Summary & Discussion
Veeco Overview

- **Products and markets**
 - LED & Solar BU
 - MOCVD, MBE, CIGS systems
 - OLED, CIGS sources
 - Data Storage BU
 - IBE, IBD, DLC, PVD

- **Key facts:**
 - Founded in 1990
 - Over 300 patents
 - Over 1000 employees worldwide
 - Over 25 global locations
 - 2010 Revenue >$900M
Veeco St Paul: >20 Years of Thermal Deposition Source Innovation

- OLED
- Solar
- MBE

1986
- Material Specific Sources

1992
- MBE Systems
- Patented As/P VC

1994
- Patented SUMO®

1996
- UNI-Bulb® RF Plasma

1997
- MBE Systems
- Patented As/P VC

1999
- Corrosive Series VC
- R&D Cu Sources

2000
- 1500cc OLED
- 15L Valved Se
- 725cc Production Cu
- Mark V As VC
- Mark V Corrosive Series VC

2001
- Private MBE company acquired by Veeco
- 10,000g Ga Source
- 15L As VC

2005
- Monte Carlo Uniformity Modeling

2007
- Mark V Valved Hg
- PV-1500cc SUMO

2009
- Mark V Valved Hg
- PV-1500cc SUMO

2010
- Mark V Valved Hg
- PV-1500cc SUMO

Reloading OLED
Linear Metal Al
PV-15L Valved Se
PV-155cc SUMO-II
PV-Linear
Mark V P VC

Copyright ©2010 Veeco Instruments. All rights Reserved. Veeco Confidential
Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco’s Source Technology
- Summary & Discussion
OLED Deposition Technologies

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Evaporation</td>
<td>Device Performance & Lifetime</td>
<td>Materials Utilization</td>
</tr>
<tr>
<td></td>
<td>Complex layer stacks</td>
<td>Material Degradation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substrate Heating</td>
</tr>
<tr>
<td>Solution Processing</td>
<td>Processing Cost</td>
<td>Device Performance</td>
</tr>
<tr>
<td></td>
<td>Materials Utilization</td>
<td>Solvent Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthogonal Solvent Compatibility</td>
</tr>
<tr>
<td>Vapor Phase Deposition</td>
<td>Morphology Control</td>
<td>Device Performance and Lifetime</td>
</tr>
<tr>
<td></td>
<td>Large Area Potential</td>
<td>Lifetime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Material Degradation</td>
</tr>
</tbody>
</table>

There are a variety of variations and hybrids of these basic technologies.
OLED Deposition Technologies

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Evaporation</td>
<td>Device Performance & Lifetime Complex layer stacks</td>
<td>Materials Utilization Material Degradation Substrate Heating</td>
</tr>
<tr>
<td>Solution Processing</td>
<td>Processing Cost Materials Utilization</td>
<td>Device Performance Solvent Management Orthogonal Solvent Compatibility</td>
</tr>
<tr>
<td>Vapor Phase Deposition</td>
<td>Morphology Control Large Area Potential</td>
<td>Device Performance and Lifetime Material Degradation</td>
</tr>
</tbody>
</table>

There are a variety of variations and hybrids of these basic technologies
Why VTE

Advantages

- Best demonstrated efficiencies
- Best demonstrated lifetimes
- Compatible with almost all materials
 - Not necessarily scalable
- Accurate film control for co-depositions and multilayered structure

Challenges

- Materials Utilization
 - Tradeoff with uniformity
- Material Degradation
 - Thermal budget
- Substrate Heating
- Rate control
 - Especially for long term operation
Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco’s Source Technology
- Summary & Discussion
OLED Markets and Process Requirements

Market Requirements

<table>
<thead>
<tr>
<th>Scale</th>
<th>Market Size ($)</th>
<th>Area (m²)</th>
<th>Cost ($/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>Millions</td>
<td>0.04</td>
<td>10k</td>
</tr>
<tr>
<td>Mobile Display</td>
<td>100s Millions</td>
<td>0.7</td>
<td>5.3k</td>
</tr>
<tr>
<td>Large Display</td>
<td>Billions</td>
<td>2.0</td>
<td>700</td>
</tr>
<tr>
<td>SSL</td>
<td>Billions</td>
<td>0.7+</td>
<td><100</td>
</tr>
</tbody>
</table>

Implication for OLED Process

<table>
<thead>
<tr>
<th>TACT (min)</th>
<th>Dynamic Rate (Åm/s)</th>
<th>Utilization (%)</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.33</td>
<td><5</td>
<td>1 day</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>20</td>
<td>3-5 days</td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>50</td>
<td>5-7 days</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>>70</td>
<td>>2 weeks</td>
</tr>
</tbody>
</table>
Technology Cost Requirements

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost ($/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>10,000</td>
</tr>
<tr>
<td>Mobile Display</td>
<td>6,000</td>
</tr>
<tr>
<td>Large Display</td>
<td>2,000</td>
</tr>
<tr>
<td>Solid State Lighting</td>
<td>1,000</td>
</tr>
</tbody>
</table>
Relative Cost and Area of Systems

Cost/m2 vs. m2/year

- R&D Display
- 2G Display
- 4.5G inline
- 5.5G Display

Cost range: $10 - $10,000
Area range: 10 - 10,000,000
Bigger Not Necessarily Better

<table>
<thead>
<tr>
<th></th>
<th>G5.5</th>
<th>2’x4’</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACT Time</td>
<td>1 min</td>
<td>1 min</td>
</tr>
<tr>
<td>Uptime</td>
<td>85%</td>
<td>80%</td>
</tr>
<tr>
<td>Yield</td>
<td>95%</td>
<td>90%</td>
</tr>
<tr>
<td>Yielded Panel Area Per Year</td>
<td>925,000 m²</td>
<td>250,000 m²</td>
</tr>
<tr>
<td>System ASP</td>
<td>$150M</td>
<td>$20M</td>
</tr>
<tr>
<td>5 Yr Depreciation Cost ($/m²)</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>OLED Chemical Cost ($/m²)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Glass, ITO, Cathode, Encap</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Operating Cost + Labor ($/m²)</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Total Cost ($/m²)</td>
<td>90</td>
<td>76</td>
</tr>
</tbody>
</table>

Can achieve <$10/6” panel but each tool will produce 8M panels/year
Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco’s Source Technology
- Summary & Discussion
OLED Markets and Process Requirements

Market Requirements

<table>
<thead>
<tr>
<th>Scale</th>
<th>Market Size ($)</th>
<th>Area (m²)</th>
<th>Cost ($/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>Millions</td>
<td>0.04</td>
<td>10k</td>
</tr>
<tr>
<td>Mobile Display</td>
<td>100s Millions</td>
<td>0.7</td>
<td>5.3k</td>
</tr>
<tr>
<td>Large Display</td>
<td>Billions</td>
<td>2.0</td>
<td>700</td>
</tr>
<tr>
<td>SSL</td>
<td>10s Billions</td>
<td>0.7+</td>
<td><100</td>
</tr>
</tbody>
</table>

Implication for OLED Process

<table>
<thead>
<tr>
<th>TACT (min)</th>
<th>Dynamic Rate (Åm/s)</th>
<th>Utilization (%)</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.33</td>
<td><5</td>
<td>1 day</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>20</td>
<td>3-5 days</td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>50</td>
<td>5-7 days</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>>70</td>
<td>>2 weeks</td>
</tr>
</tbody>
</table>
Veeco Organic Source Product Line

<table>
<thead>
<tr>
<th>Source</th>
<th>Market</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Source</td>
<td>R&D</td>
<td>- Low Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simple maintenance and material replacement</td>
</tr>
<tr>
<td>Bulk Valved Source</td>
<td>R&D, Mobile Display</td>
<td>- Valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nozzle Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Scanning & Fixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flexible Geometry</td>
</tr>
<tr>
<td>Re-loading Source</td>
<td>Mobile Display, TV, TV</td>
<td>- Valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nozzle Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Re-loading for high uptime and minimized degradation</td>
</tr>
</tbody>
</table>
OLED Bulk Valved Source

- Linear nozzle
- Flux monitor port
- Cooled nozzle cover
- Removable material crucible
- Valve actuator
- Cable connections
Organic Reloading Source

- Separate vaporization and distribution zones for easy scaling
 - Enables operation over a wide flux range (dopant to host)
- Bulkhead mounted for high speed in-line systems
- Closed loop valved flux control for rapid rate changes and precision control
- Low residence time of material in vaporizer to minimize degradation
- Source can be reloaded during normal operation
 - Enables extended operating times between system maintenance
Dosing Sequence

Storage Hopper

Doser

Vaporizer

Valve

To Nozzle
Key Technologies for OLED Source

- **Valve** – enables rapid flux control
 - Compensate for evaporation rate variation
 - Idle source between substrates

- **Flux gauge** – provides feedback for valve
 - Necessary for rapid flux control
 - Requires much longer lifetime than conventional gauge technology

- **Control algorithms** - integrated control of flux
 - Control software that can keep source in optimum operating range
 - Enables reloading process, which causes large changes in rate

- **Nozzle** – large area distribution
 - Achieve high utilization and uniformity on large substrates
Key Technologies: Valve

Valve Position Control of Rate

- Large Dynamic Range
- Highly Reproducible

Valve Opening (%)

Deposition Rate Vs. Time

- 100x rate control
- < 2s response rate

Valve reduces wasted source material.

- Allows rapid flux control to improve yield and CoO
Key Technologies: Flux Gauge

- Internally-developed *in situ* flux gauge integrates directly to sources
- Large linear range allows precise flux measurements
- Allows closed loop control of valve
- No lifetime error/drift issues as seen in QCMs
- Greatly improves flux stability
- Improves panel yield and CoO
Key Technologies: Flux Regulation

- Deposition Rate regulated to $\leq \pm 1\%$ for >30 hours
- Crucible temperature deliberately changed by 18ºC during test.
Key Technologies: Flux Regulation

12 hrs flux control with material reloading in 3 hr intervals.

- In Situ Gauge accurately controls over entire test.
- QCM readings develop errors and issues as material accumulates.
Key Technologies: Nozzle (Uniformity)

4G (0.73m) System
- Uniformity* = ±0.72 to ±1.87% depending on rate
- 1 Valved Source with linear nozzle
- 37% material utilization
- Source-to-substrate distance = 300mm
- Material; multiple

* Measured by ellipsometry

Gen III, 730 mm nozzle

±.72% @ 2.7 Åm/s

±1.80% @ 15 Åm/s

±1.87% @ 12 Åm/s
Key Technologies: Nozzle (Design)

- Strong tradeoff between material utilization and OLED/Glass heating
- Careful consideration must be given to impacts on nozzle conductance and uniformity.
Key Technologies: Nozzle (Heating)

![Diagram showing bonded thermocouples and static glass with source nozzle]

Average temperature increase is less than 10ºC even for static glass.
Requirements for Roadmap

- Reloading source has adequate dynamic rates for the MD and LD markets. Improvements are needed for SSL.
- Reloading source needs utilization improvements for LD and SSL markets.
Requirements for Roadmap – Current Results

- Reloading source has adequate dynamic rates for display markets. Improvements are needed for SSL.
- Utilization can be achieved, but requires system design optimization.
Conclusions

- Manufacturing process for current OLED technologies is feasible, however targeted equipment required
 - Need a target device structure
 - Market entry size challenging

- Need R&D that is factoring in manufacturing needs
 - Many aspects of device design still based on hero results
 - Materials only have to last hours for R&D testing
 - Lots of “if we simply add _____, this will be manufacturable”

- Veeco has developed thermal evaporation source technologies capable of large area displays and SSL
Challenges for OLED Deposition by Vacuum Thermal Evaporation

D. W. Gotthold, M. O’Steen, W. Luhman, S. Priddy, C. Counts, C. Roth
June 7, 2011