Challenges for OLED Deposition by Vacuum Thermal Evaporation

D. W. Gotthold, M. O'Steen, W. Luhman, S. Priddy, C. Counts, C. Roth June 7, 2011

Innovation. Performance. Brilliant.

Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco's Source Technology
- Summary & Discussion

Veeco Overview

- Products and markets
 - LED & Solar BU
 - MOCVD, MBE, CIGS systems
 - OLED, CIGS sources
 - Data Storage BU
 - IBE, IBD, DLC, PVD
- Key facts:
 - Founded in 1990
 - Over 300 patents
 - Over 1000 employees worldwide
 - Over 25 global locations
 - 2010 Revenue >\$900M

Veeco St Paul: >20 Years of Thermal Deposition Source Innovation

Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco's Source Technology
- Summary & Discussion

OLED Deposition Technologies

Method	Advantages	Disadvantages
Thermal Evaporation	Device Performance & Lifetime Complex layer stacks	Materials Utilization Material Degradation Substrate Heating
Solution Processing	Processing Cost Materials Utilization	Device Performance Solvent Management Orthogonal Solvent Compatibility
Vapor Phase Deposition	Morphology Control Large Area Potential	Device Performance and Lifetime Material Degradation

There are a variety of variations and hybrids of these basic technologies

OLED Deposition Technologies

Method	Advantages	Disadvantages
Thermal Evaporation	Device Performance & Lifetime Complex layer stacks	Materials Utilization Material Degradation Substrate Heating
Solution Processing	Processing Cost Materials Utilization	Device Performance Solvent Management Orthogonal Solvent Compatibility
Vapor Phase Deposition	Morphology Control Large Area Potential	Device Performance and Lifetime Material Degradation

There are a variety of variations and hybrids of these basic technologies

Why VTE

Advantages

- Best demonstrated efficiencies
- Best demonstrated lifetimes
- Compatible with almost all materials
 - Not necessarily scalable
- Accurate film control for co-depositions and multilayered structure

Challenges

- Materials Utilization
 - Tradeoff with uniformity
- Material Degradation
 Thermal budget
- Substrate Heating
- Rate control
 - Especially for long term operation

Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco's Source Technology
- Summary & Discussion

OLED Markets and Process Requirements

Market Requirements

Implication for OLED Process

Scale	Market Size (\$)	Area (m²)	Cost (\$/m²)	TACT (min)	Dynamic Rate (Åm/s)	Utilization (%)	Uptime
R&D	Millions	0.04	10k	10	0.33	<5	1 day
Mobile Display	100s Millions	0.7	5.3k	3	5.2	20	3-5 days
Large Display	Billions	2.0	700	2	12.5	50	5-7 days
SSL	Billions	0.7+	<100	0.5	40	>70	>2 weeks

Technology Cost Requirements

Relative Cost and Area of Systems

Cost/m²

Bigger Not Necessarily Better

OLED	G5.5	2'x4'
TACT Time	1 min	1 min
Uptime	85%	80%
Yield	95%	90%
Yielded Panel Area Per Year	925,000 m ²	250,000 m ²
System ASP	\$150M	\$20M
5 Yr Depreciation Cost (\$/m ²)	30	16
OLED Chemical Cost (\$/m ²)	10	20
Glass, ITO, Cathode, Encap	41	30
Operating Cost + Labor (\$/m ²)	9	10
Total Cost (\$/m ²)	90	76

Can achieve <\$10/6" panel but each tool will produce 8M

Copyright ©2010 Veeco Instruments. All rights Reserved.

Outline

- Introduction to Veeco
- Methods of OLED Deposition
- Cost Challenges to OLED Technology
- Veeco's Source Technology
- Summary & Discussion

OLED Markets and Process Requirements

Market Requirements

Implication for OLED Process

Scale	Market Size (\$)	Area (m²)	Cost (\$/m²)	TACT (min)	Dynamic Rate (Åm/s)	Utilization (%)	Uptime
R&D	Millions	0.04	10k	10	0.33	<5	1 day
Mobile Display	100s Millions	0.7	5.3k	3	5.2	20	3-5 days
Large Display	Billions	2.0	700	2	12.5	50	5-7 days
SSL	10s Billions	0.7+	<100	0.5	40	>70	>2 weeks

Veeco Organic Source Product Line

Source	Market	Features
Point Source	R&D	 Low Cost Simple maintenance and material replacement
Bulk Valved Source	 R&D Medium volume production (Mobile Display) 	 Valve Nozzle Distribution Scanning & Fixed Flexible Geometry
Re-loading Source	 Medium volume production (Mobile Display, TV) High volume production (TV, Lighting) 	 Valve Nozzle Distribution Re-loading for high uptime and minimized degradation

Veeco Confidential

OLED Bulk Valved Source

17

Organic Reloading Source

- Separate vaporization and distribution zones for easy scaling
 - Enables operation over a wide flux range (dopant to host)
- Bulkhead mounted for high speed in-line systems
- Closed loop valved flux control for rapid rate changes and precision control
- Low residence time of material in vaporizer to minimize degradation
- Source can be reloaded during normal operation
 - Enables extended operating times between system maintenance

18

Dosing Sequence

Key Technologies for OLED Source

- Valve enables rapid flux control
 - Compensate for evaporation rate variation
 - Idle source between substrates
- Flux gauge provides feedback for valve
 - Necessary for rapid flux control
 - Requires much longer lifetime than conventional gauge technology
- Control algorithms integrated control of flux
 - Control software that can keep source in optimum operating range
 - Enables reloading process, which causes large changes in rate
- Nozzle large area distribution
 - Achieve high utilization and uniformity on large substrates

Key Technologies: Valve

21

Key Technologies: Flux Gauge

- Internally-developed in situ flux gauge integrates directly to sources
- •Large linear range allows precise flux measurements
- Allows closed loop control of valve
- •No lifetime error/drift issues as seen in QCMs
- •Greatly improves flux stability
- Improves panel yield and CoO

Key Technologies: Flux Regulation

- Deposition Rate regulated to <±1% for >30 hours
- Crucible temperature deliberately changed by 18°C during test.

Key Technologies: Flux Regulation

- In Situ Gauge accurately controls over entire test.
- QCM readings develop errors and issues as material accumulates.

Key Technologies: Nozzle (Uniformity)

4G (0.73m) System
Uniformity*=±0.72 to ±1.87% depending on rate

- 1 Valved Source with linear nozzle
- 37% material utilization
- Source-to-substrate distance = 300mm
 Material; multiple
 - Measured by ellipsometry

Key Technologies: Nozzle (Design)

Material Utilization Glass Heating Relative Nozzle Aperature Heat Load (%) 2.5 Material Utilization (%) 1.5 **Relative** 0.5 Nozzle Working Distance (mm) Nozzle Working Distance (mm)

- Strong tradeoff between material utilization and OLED/Glass heating
- Careful consideration must be given to impacts on nozzle conductance and uniformity.

Key Technologies: Nozzle (Heating)

Heating of Static Glass by Nozzle

Average temperature increase is less than 10°C even for static glass.

Requirements for Roadmap

- •Reloading source has adequate dynamic rates for the MD and LD markets. Improvements are needed for SSL.
- •Reloading source needs utilization improvements for LD and SSL markets.

Requirements for Roadmap – Current Results

- Reloading source has adequate dynamic rates for display markets. Improvements are needed for SSL.
- Utilization can be achieved, but requires system design optimization

Conclusions

- Manufacturing process for current OLED technologies is feasible, however targeted equipment required
 - Need a target device structure
 - Market entry size challenging
- Need R&D that is factoring in manufacturing needs
 - Many aspects of device design still based on hero results
 - Materials only have to last hours for R&D testing
 - Lots of "if we simply add _____, this will be manufacturable"
- Veeco has developed thermal evaporation source technologies capable of large area displays and SSL

Challenges for OLED Deposition by Vacuum Thermal Evaporation

D. W. Gotthold, M. O'Steen, W. Luhman, S. Priddy, C. Counts, C. Roth June 7, 2011

Innovation. Performance. Brilliant.