

Market Opportunities and Manufacturing Challenges in OLED Lighting

J. Norman Bardsley

Bardsley Consulting Danville, CA jnbard@pacbell.net

CCR Workshop Minneapolis June 7, 2011 CCR Workshop, Minneapolis, June 2011

Introduction to JNB

- MA in mathematics, Cambridge University
- Ph.D. in theoretical physics, University of Manchester
- 20 years as a physics professor, mainly at University of Pittsburgh
- 30 years research in atomic & molecular physics & ionized gases
- 15 years managing research at Lawrence Livermore National Lab
- 15 years as advisor to industry on displays & lighting
- 4 years as consultant to the DOE Solid State Lighting Program

I know a little about a lot of things but am not an expert on anything

- My major goal is to encourage collaborations to bring technology from the lab to market
- I do not make market forecasts or give investment advice

Outline

- What is the market opportunity?
 - Form, fit, function and flair
 - Energy savings
 - Light control
- Efficacy key to long life & low cost
 - Light extraction
 - Voltage reduction
 - Spectrum shaping
- Manufacturing challenges
 - Reliability and reproducibility
 - Cost
 - The valley of death

Sizing the NA Market – Lumens, Lamps and Luminaires

17

Hiding The Light: A Waste of Energy and Money?

Sources: Lowes.com; Lighting Direct.com; Lithonia; Thomas

CCR Workshop, Minneapolis, June 2011

The Best OLED Lighting You Can Buy Today

- Luminous efficacy: 45 lm/W
- Thickness: 1.8 mm
- Lifetime: 10,000 hours
- Luminance: 1,000 cd/m²
- Current/voltage: 71.5 mA / 3.6 V
- Color coordinates (x; y): 0.45 ; 0.41
- Color temperature: 2,800 K

- Active area: ~ 40cm²
- Light output: ~12 lm
- Price: \$175 (€120)
- Price per kilolumen: ~ \$14,500

Manufacturing Priorities: Higher Brightness and Larger Area

Lumiblade Plus from Philips:

https://www.lumiblade-shop.com/

Bardsley Consulting

Mondo on OLED Lighting Design 2010

arc

David Morgan: "The audience was non-plussed. This particular version of the future looks rather boring and flat"

THE INTERNATIONAL MAGAZINE FOR GRCHITECTURAL GETAIL AND COMMERCIAL LIGHTING

Ingo Maurer: "OLED light has a more spiritual feeling than traditional light sources, it also has no sex appeal as it is so flat

Philippe Starck also finds the quality of light from OLED panels to be boring and the technology incomprehensible

David Morgan : "The luminaire and OLED manufacturers went home disappointed"

http://www.mondoarc.com/comment/guest_articles/561089/our_oled_insider.html

Prototype OLEDs

Acuity

Novaled

UDC-Armstrong

GE

Suspended Ceiling Lights?

Bardsley Consulting

CCR Workshop, Minneapolis, June 2011

Pentelic Designs from Rambus

Table or Desk Top Lamps?

Pentelic Designs from Rambus

CCR Workshop, Minneapolis, June 2011

Is OLED Efficacious Enough?

Source: DOE CALIPER Round 9 Summary Report

SPIE 2010

FIRST

Lighting New Green Life

Yuan-Sheng Tyan

The Goal Posts Are Moving!

Cree CR24[™] Troffer

Product Series & Size	Lumen Output	Color Temperature
CR24 2'x4'	22L 22W 2200 Lumen - 100 LPW	35K 3500 Kelvin
	40L 44W 4000 Lumen - 90 LPW	40K 4000 Kelvin
	40L HE 36W 4000 Lumen - 110 LPW	
	50L 50W 5000 Lumen - 100 LPW	

50,000 hour lifetime

5-year warranty

Price: \$200-300 CR24-40L35K

CCR Workshop, Minneapolis, June 2011

Super T8s are efficient

- 1. Lamp + ballasts = 100 lumens per watt
- 2. They achieve this at 3500 K &> 80 CRI
- 3. Lamp + ballast + luminaire = 80 to 90 lumens / watt
- Correctly applied high quality, ambient light in the office needs only .45 to .55 watts / sq ft
- Dimming and controls have been shown to reduce that to .25 to .35 watts / sq ft. actual, measured load
- 6. If SSL can make luminaires twice as efficient, the energy savings would be about .1 to .2 watts / sq ft
- 7. At 80 sq ft / luminaire, .2 watts savings = \$10.48 / yr (80 x .2 x 14 hrs/day x 312 days/yr x \$.15 /kwhr 1,000)

Source: Terry Clark (Finelite) DOE SSL R&D workshop 2011

OLED Luminaire Efficacy Targets

Metric	2010	2012	2015	2020
Panel Efficacy (lm/W)	58	86	125	168
Optical Efficiency of Luminaire	100%	100%	90%	95%
Efficiency of Driver	88%	90%	93%	93%
Total Efficiency from Device to Luminaire	88%	90%	84%	88%
Luminaire emittance (lm/m ²)	3,000	6,000	9,000	9,500
Resulting Luminaire Efficacy (lm/W)	51	77	105	148

Note: Efficacy projections assume CRI > 80, CCT 2580-3710

The values of optical efficiency quoted for 2010 and 2012 assume no light shaping optics

DOE SSL R&D Multi-Year Program Plan, March 2011

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf

(I)LED Luminaire Performance Targets

Metric	2010	2012	2015	2020
Package Efficacy – Commercial				
Warm White (lm/W, 25°C)	92	141	202	266
Thermal Efficiency	86%	86%	88%	90%
Efficiency of Driver	85%	86%	89%	92%
Efficiency of Fixture	85%	86%	89%	92%
Resultant luminaire efficiency	62%	64%	69%	76%
Luminaire Efficacy – Commercial				
Warm White (lm/W)	57	91	139	202
High Current Luminaire Efficacy –	44	74	123	202
Commercial Warm White (m/ W)	77	77	125	202

Notes:

- 1. Efficacy projections for warm white luminaires assume CCT=2580-3710K and CRI=80-90.
- All projections assume a drive current density of 35 A/cm², reasonable package life and operating temperature.
- Luminaire efficacies are obtained by multiplying the resultant luminaire efficiency by the package efficacy values.

DOE SSL R&D Multi-Year Program Plan, May 2011

Application Efficiency: Office Lighting

Source: Acuity Lighting(2011)

Lighting System Type	Approx W/sf	Excessive Non-task, Circulation Illumination	Application Efficiency
2x4 LED Advanced Troffer	0.62	6X, 8X	35%
Fluorescent Low Ambient with LED Task	0.56 – 0.69	4X, 5X	36-44%

Jeannine Fisher, Peter Ngai, and Min-Hao Michael Lu

Int. Display Manufacturing Conf., paper 23-01

CCR Workshop, Minneapolis, June 2011

OFFICE ENVIRONMENT

LUNERA[™]

LIGHTING SCENARIO

Project Type: Retrofit Facility Type: Standard Open Office Building Size: 100,000 sq/ft office Electricity Cost: \$0.135/kWhr (5% appreciation for inflation) Duty Cycle: 12/5 – 3,120 hours/yr Ceiling Height: 12 ft

(I)LED @ 50-60lm/W vs fluorescent in large office

Limited focusing: 66% of Lambertian at 75⁰

LUNERA FLUORESCENT Lunera LED 2200 (55W) 3 Lamp T8 (89W) 10' x 10' spacing 10' x 10' spacing COMPARATIVE ANALYSIS FLUORESCENT LUNERA AVERAGE KWH CONSUMED/YR AVERAGE KWH* CONSUMED/YR 302,640 145,860 FIXTURES REQUIRED FIXTURES REQUIRED 1,000 1.000 LIGHTING POWER DENSITY (LPD) LIGHTING POWER DENSITY (LPD) 0.55 w/sqft 0.89 w/sq.ft GREEN HOUSE GAS (5 YEARS) GREEN HOUSE GAS (5 YEARS) 1,301 TONS 627 TONS

Payback ♣3.1 YEARS

Lifecycle Savings \$1,095,000

kWhr Saved Annually

156,780

Lamp Life Improvement*

Electricity & Maintenance Cost Reduction

Uniformity Improvement

Tons of CO2 (over 5 years)

*Lunera solution includes dimming controls.

Shop: Shelves and integration in furniture

Product Description:

Self-illuminated shelves, selfilluminated backwalls for effective presentation of goods

Lamp specification:

Single side / double sideLuminance $1,000 \text{ cd/m}^2$ Light output $2,500/5000 \text{ lm/m}^2$ Efficiency>40 lm/WTypical size $0.3 \times 1.0 \text{ m}$ $0.6 \times 1.0 \text{ m}$

Flat lamp shelve wall UN. wall

ZUMTOBEL

LEDON

Source: Jorg Amelung

Combine Markets to Achieve Scale

Application	Est. Market (m²)	Cost Limit (\$/m²)
General Area Lighting	5,000,000+	\$100
Flexible	200,000	\$200
Transparent	100,000	\$300
Ultra thin/ light weight	200,000 1111余代	\#mailidate
High Performance (I/m2)	100,000	\$500
Architectural	100,000	\$700

Separately niche applications will never hit the cost targets due to low manufacturing volumes.

If multiple niche applications can be done on the same production line, then reasonable costs can be achieved.

Home Depot Lighting Fixtures by Price

Price (\$)	Ceiling Mounts	Decorative Fluorescents	Pendants	Chandeliers
0-200	901	267	996	468
200-400	94	17	278	477
400-600	19	3	78	173
600-800	4	0	36	81
800-1000	3	0	12	30
1000-2000	11	0	36	75
2000-4000	1	0	8	24
4000-11,000	0	0	7	9
Total	1033	287	1325	1323
Energy Star Qualified	163	239	124	121

http://www.homedepot.com/

Outline

- What is the market opportunity?
 - Form, fit, function and flair
 - Energy savings
 - Light control
- Efficacy key to long life & low cost?
 - Light extraction
 - Voltage reduction
 - Spectrum shaping
- Manufacturing challenges
 - Reliability and reproducibility
 - Cost
 - The valley of death

Efficacy – Factors

- Luminous Efficacy of Radiation
 - Increase from 325 lm/W to ~400 lm/W
 - Narrower red emission spectrum
- Internal Quantum Efficiency
 - Need reliable measure
 - Should emitters be all phosphorescent?
- Electrical Efficiency
 - Now ~ 60% on small panels
 - Need 80% on large panels (drive voltage < 2.8V)
- Extraction Efficiency
 - Only ~25% in prototypes
 - 5-year target 60-75%

OLED Efficiency Analysis

DOE SSL R&D Multi-Year Program Plan, March 2011

CCR Workshop, Minneapolis, June 2011

Improved Light Extraction is Critical

Should be accomplished through thin-film structures

- Where?
 - Outer surface of transparent substrate
 - Between substrate and transparent conductor
 - Inside transparent conductor
 - Between the electrodes
 - At edges
- How?
 - Scatter light
 - Bend light rays (without chromatic aberrations)
 - Micro-cavities or multi-layers (without chromatic aberrations)
- Uncertainties
 - Low-cost high-index substrates
 - Energy losses in metal electrode
 - Manufacturability of sub-micron patterns
 - Complementarity of partial solutions

FIRSTOLITE Kodak Work on Scattering Layers Lighting New Green Life Tandem Hybrid OLED with IES

	Calculated IQE, %				
	If Extration If Extrati				
	η=60.4%	η= 37.8%			
NES 23.8% EQE	91.5	146.5			
EES 43.9% EQE	93.8	150.1			
IES 54.8% EQE	90.7	145.2			

	NES	EES	IES
mA/cm2	1	1	1
cd/m2	430	937	1213
EQE%	23.8	43.9	54.8
cd/A	43.0	93.7	121.3
CIE-x	0.385	0.411	0.393
CIE-y	0.342	0.374	0.387
Voltage	5.9	5.9	5.7
Im/W	23.1	50.1	66.4
CCT,K			3691
dC	6.b) (d		0.00145
CRI	2.2) (S 7) (S		84.9
Ratio to			
NES		2.2	2.9

Devices with same layer structure.

Tyan et al SID2009

Yuan-Sheng Tyan

NET-61 Outcoupling in Highly Efficient Tandem OLED

- Two unit hybrid white approach, using fluorescent blue emitters
- Power efficiency of plain OLED is increased from 26.9 lm/W to 38.5 lm/W
- With an external MLA film the power efficiency goes up to 50.1 lm/W @1000 cd/m² (+ 80% quantum efficiency compared to plain OLED)

Source: Qiang Huang (Novaled)

Photonic Crystals by Nano-Imprint Lithography

Randomly Dispersed Nano-pillar Arrays

External Control of Light Direction

Vikuiti[™] films from 3M

EZContrast by ELDIM270

On-Axis Brightness: 55.27 nits Brightness Gain: 1.0 Hor. 1/2 Brightness Angle: 60.0° Ver. 1/2 Brightness Angle: 55.0° Integrated Intensity: 105.62 lm/m²

On-Axis Brightness: 83.10 nits Brightness Gain: 1.50 Hor. 1/2 Brightness Angle: 47.0° Ver. 1/2 Brightness Angle: 32.5° Integrated Intensity: 103.2 lm/m²

2% loss

xBEF II 90/50 90 50.00 % 45 45 180 180 225 315

EZContrast by ELDIM270 On-Axis Brightness: 108.7 nits Brightness Gain: 1.97 Hor. 1/2 Brightness Angle: 24.0° Ver. 1/2 Brightness Angle: 23.0° Integrated Intensity: 85.57 lm/m²

20% loss

But how do these films interact with the underlying layers?

Source: Bob Bennett (3M)

CCR Workshop, Minneapolis, June 2011

Prism Films Functionality

- Light is managed geometrically and optimized for the desired use.
- Recycles off-axis light not normally useable to the viewer
- Improves brightness, contrast, and uniformity

Off-axis light refracted toward viewer

On-axis light recycled by backlight cavity Vikuiti[™] BEF

Without BEF With BEF

Viku

Dim

Bright

3M Optical Systems Division

Electrical Efficiency

- Efficient transport of current across the panel
 - Transparent conductor
 - Wire grids, bus bars or series connectors
- Injection and transport of charge between the electrodes
 - Electrode work function
 - Transport layers
 - Hosts for dopants in emission layers
- Efficient conversion of energy from electrons to photons
 - Loss to vibrational motion
 - Stokes shifts leading to extra losses for green and red

Target: Reduce the drive voltage to ~2.8V for currents of 2.5 mA/cm²

Voltage Reduction Strategies

<u>Novaled</u> has shown that <u>ion-doping</u> can increase the conductivity of the transport layers Reineke at al (IAPP Dresden 2009)

Tandem Structures (Kodak)

	mA/cm2	cd/m2	EQE%	cd/A	CIE-x	CIE-y	۷	lm/W	CCT	CRI	EQE/NESD
NESD	1	453	21.5	45.3	0.380	0.392	5.7	24.8			
EESD	1	795	37.0	79.5	0.383	0.378	5.7	43.9	3865	81.1	1.72
IESD	1	1022	49.2	102.2	0.387	0.389	5.7	56.0	3836	83.6	2.29

CCR Workshop, Minneapolis, June 2011

Color Stripes with Separate Drive

(UDC)

Where ist the voltage limit: Results for thermodynamically ideal device

Source: Karl Leo (IAPP Dresden)

R. Meerheim et al., Proc. SPIE 6192, 61920P/1 (2006) 1.89V (Novaled)

Transparent Conductors and Metal Grids

Voltage drop across panel should be less than 0.03V

Hexagonal grids in Orbeos from Osram

Tabola from Fraunhofer IPMS

IR losses are minimal

For bulk Al wires and good ITO L can be up to ~ 20 cm s can be up to ~ 2 cm

For acceptable light blockage w/s < 0.1

CCR Workshop, Minneapolis, June 2011

Parallel metal bars driven from both ends

34

Luminous Efficacy of Radiation (lm/W)

Theoretical Im/W for a given spectrum

Yoshi Ohno DOE SSL R&D Workshop 2010

Light Spectra and Color Quality

NIST I

Yoshi Ohno DOE SSL R&D Workshop 2010

Phosphor white LED simulation

Yoshi Ohno DOE SSL R&D Workshop 2010

OLED Spectra

OLED Efficacy : Theoretical Limit

CTÖLITE

Lighting New Green Life

FIRSTO

	Phosphorescent Single Stack	Hybrid Double Stack
CCT =	4000 K	4000 K
	Model	Model
В	26.6	36.2
G	49.3	66.7
R	24.1	33.3
IQE	100%	136%
Lum/A	721.7	984.8
Voltage	2.9	5.4
Extrct	100%	100%
EQE	100%	136%
LPW	249	184

Yuan-Sheng Tyan

Outline

- What is the market opportunity?
 - Form, fit, function and flair
 - Energy savings
 - Light control
- Efficacy key to long life & low cost
 - Light extraction
 - Voltage reduction
 - Spectrum shaping
- Manufacturing challenges
 - Reliability and reproducibility
 - Cost
 - The valley of death

Manufacturing Issues

- Best manufacturing strategy is still unclear
 - Sheet vs roll-to-roll
 - Dry vs wet processing
 - Rigid versus flexible substrates
 - Simple vs complex structures
- Various options for the manufacturing scale
 - Desk-top style printing (eg AVI)
 - Gen 5-8 FPD equipment (Samsung, LG....)
 - Newspaper style web printing (KM-GE?)
- Need for fine patterning is uncertain
 - 10 μm accuracy may be enough in registration and critical dimension
 - Light extraction layer may need submicron patterning over large area
- Reliability & Reproducibility

Bardsley

onsultina

Avoid binning, returns and recalls

Manufacturing – Reliability & Reproducibility

- Quality Control Challenges at all Levels
 - Input materials
 - Purity of organics
 - Cleanliness & smoothness of substrates
 - Integrity of barrier layers
 - In-line monitoring
 - Process control
 - Defect detection
 - Rapid back-end inspection & test
- Reproducibility
 - Luminance: <u>+</u>10%?
 - Color coordinates: within 2-step Macadam ellipse

Source: Yoshi Ohno (NIST)

Commercial OLED Lighting Panels

Manufacturing Cost Breakdown: Moser Baer Estimate for 2012/13

2012/13 Target Unit Manufacturing Cost	.m)	\$ 250			
Annual Product	Annual Product Shipments				
Unit Manufacturing Cost Breakdown (MP)	N	lass Produc	tion (\$/m2)		
Module assembly materials not included		1055110000	(9/112)		
Total	\$	250.00			
Substrate	Substrate \$				
OLED Materials	\$	50.00	20%		
Encapsulation Materials	\$	20.00	8%		
Indirect Materials	\$	10.00	4%		
Labor Cost	\$	40.00	16%		
Depreciation	\$	50.00	20%		
Overhead Expenses	\$	25.00	10%		
Business Expenses	\$	15.00	6%		
			100%		

Assumptions

- 1) OLED Materials Utilization ~ 50%;
- 2) Substrate = Glass + LEL + TCO + Other Layers + Patterning;
- 3) Product Size = 150 x 150 mm
- 4) Module BOM & Assembly Costs not included

Source: Gopalan Rajeswaran

RT Projected Materials Costs* of OLED Lighting Panels(sheet processed) achieved through advancements

Stage	T In ite	Year				
Stage	Units	2011	2013	2015		
Organic Materials (Material Utilization)	\$/m ²	50 (30%)	20 (50%)	10 (70%)		
Substrate	\$/m ²	50	7	7		
Electrodes	\$/m ²	30	30	15		
Light extraction	\$/m ²	20	15	30		
Encapsulation	$/m^2$	100	15	10		
Other materials	$/m^2$	20	15	10		
Tetal Cast	$^{m^2}$	340	122	86		
Total Cost	\$/klm	110	20	9		

*Focus on added cost of materials rather than labor and capital

Source: Harry Buhay

How Do We Get Cost Down?

Component	Requirement	Targets	Cost Contribution
Equipment (Entire Line)	Low cost High throughput	< \$100 capital/m²/yr < \$30M total cost	< \$20/m ²
OLED Materials	High utilization Low cost	> 70% utilization > 50% cost reduction	< \$10/m ²
Other Materials	Low cost	Glass: < \$5/m ² Light Extraction: < \$5/m ² TCO: < \$5/m ² Encapsulation: < \$10/m ² Other: < \$5/m ²	< \$30/m²
Labor	Highly automated for US manufacturing	< 30 operators/line for 24/7 operation	< \$5/m ²

- Highest priority is low cost/high throughput equipment for every step of the manufacturing process (highest cost step is OLED stack deposition).
- Second highest priority is low cost "other materials" (OLED materials cost will decrease due to display volume growth).

Source: Michael Boroson

Display vs Float Glass Comparison

Property	Borosilicate Glass	2-Side Polished Float Glass	Float Glass
Smoothness	Good	Good	Acceptable for OLED Lighting
Alkali Leeching	Good	Poor; May be acceptable with Na Barrier	Poor; May be acceptable with Na Barrier
Temperability	Poor	"Poor"	Good
Large Area	Yes	No	Yes
Cost (\$/m ²)	~40	~10	~4-6
Main Driver	DISPLA		

Source: Harry Buhay

Dol

Manufacturing – Depreciation Costs

- Gen 4 line (730 x 920 mm)
- 2 minute cycle time; 24 hour, 7 day operation
 - Annual capacity: 176,500 m² (substrate area)
 - Facilities cost: \$150M

Line Utilization Factor and Depreciation Costs:

	Start	Average	Target
Product Area (ratio)	0.7	0.8	0.9
Up time (ratio)	0.6	0.75	0.9
Yield (ratio)	0.6	0.75	0.9
Utilization factor	0.25	0.42	0.73
Depreciation - \$ per m ²	675	405	230

Assume

Manufacturing Cost Estimate (April 2011 update) Moser Baer Update for 2013 (Production Capacity ~ 2.5Mn/Yr

Assumptions

- 1) OLED Materials Utilization: Pilot ~ 30%; Mass Production ~ 50%
- 2) Integrated Substrates: Light Extraction, TCO
- Product Size = 150 x 150 mm
- 4) Module Bill-of-Materials included = 30% of total materials costs (assumption)

Source: Gopalan Rajeswaran

moserbaer

Meanwhile...

ILED developers are reducing their cost projections as they increase their performance targets

Can we reach 500 lm/\$ Package @ 2012....2013

- Asian companies learn from LED TV offers good lm/\$ LED packages
- Collaboration between performance leader and cost leader make it happen

• 1,000 lm/\$ @ 2015

LED'S BRIGHTEST LINK

The Valley of Death

Improving yield and reducing manufacturing requires practice, practice, practice....

What is right scale for a first production line?

How we do pay for the learning experience?

Outline

- What is the market opportunity?
 - Form, fit, function and flair
 - Energy savings
 - Light control
- Efficacy key to long life & low cost
 - Light extraction
 - Voltage reduction
 - Spectrum shaping
- Manufacturing challenges
 - Reliability and reproducibility
 - Cost
 - The valley of death

