

Converting Biomass to Liquid Hydrocarbon Fuels

Catalysis and Biomass Feedstocks Workshop Council for Chemical Research Thomas D. Foust Director, National Advanced Biofuels Consortium September 21, 2011

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- Future directions of transportation fuel needs
- Conversion options and initial assessment of potentials
- Barrier areas and research needs
- Path forward

EISA Mandated Biofuel Production Targets

EISA defines **Cellulosic Biofuel** as "renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions...that are *at least 60 percent less* than baseline lifecycle greenhouse gas emissions." The EPA interprets this to include cellulosic-based diesel fuel.

EISA defines **Advanced Biofuel** as "renewable fuel, other than ethanol derived from corn starch, that has lifecycle greenhouse gas emissions...that are *at least 50 percent less* than baseline lifecycle greenhouse gas emissions." This includes biomass-based diesel, cellulosic biofuels, and other advanced fuels such as sugarcane-based ethanol.

U.S. Transportation Fuel Needs

Source: Energy Information Agency

NABC

National Advanced Biofuels Consortium

	2008	2030
Motor gasoline	137	126
Diesel	43	71
Jet fuel	23	30

Products in a Barrel of Crude (gal)

Other Distillates (heating oil) - 1.38

Heavy Fuel Oil (Residual) - 1.68

Liquefied Petroleum Gases (LPG) - 1.72

Long-Term Role of Ethanol

Ultimate ethanol market - 20 - 25 BGY

- •EPA has approved E15 as substantially similar to gasoline
- •E85 sales gaining slightly –still very small as overall percentage
- •E20 future uncertain EPA will most likely take a wait and see posture on results of E15
- •Strong sentiment that VETC will not be renewed beyond 2011
 - Impact on ethanol production volumes uncertain

Ethanol Production

<u>Corn</u>

- •2010 production 13.2 BGY
 - Nameplate 13.5 BGY
 - Construction/Expansion 0.5 BGY
 - Total 14.0 BGY

Lignocellulosic

•Currently being piloted by a number of organizations-DuPont, Poet, Abengoa

National Advanced Biofuels Consortium

Project Objective – Develop cost-effective technologies that supplement petroleum-derived fuels with advanced "drop-in" biofuels that are compatible with today's transportation infrastructure and are produced in a sustainable manner.

ARRA Funded:

- 3 year effort
- DOE Funding \$35.0M
- <u>Cost Share</u> \$15.1M **Total** \$50.1M

Consortium Leads

National Renewable Energy Laboratory Pacific Northwest National Laboratory

Consortium Partners

Albemarle Corporation Amyris Biotechnologies Argonne National Laboratory BP Products North America Inc. Catchlight Energy, LLC Colorado School of Mines Iowa State University Los Alamos National Laboratory Pall Corporation RTI International Tesoro Companies Inc. University of California, Davis UOP, LLC Virent Energy Systems Washington State University

NABC Research Focus

Converting biomass into infrastructurecompatible materials

NABC matrix of technology and strategy teams will ensure development of complete integrated processes. **Process Strategies Cross-Cutting Technologies Feedstock Logistics** Pretreatment Catalytic Conversion of Lignocellulosic Sugars Fermentation of Lignocellulosic Sugars **Separations** Hydrothermal Liquefaction **Catalytic Fast Pyrolysis Syngas to Distillates** Catalyst Development/Upgrading **Hydropyrolysis Pyrolysis Modeling Engineering and Economic Analysis Sustainability Analysis Refinery Integration** NABC: For open distribution

Refinery Integration

- Three possible insertion points
- Develop new technologies that use today's infrastructure

Down-selection matrix

	(C1) Fuel / Interm- ediates quality	(C2)Technical readiness	(C3)Sustain- ability	(C4) Process Efficiency	(C5) Capital and operating costs	(C6) Catalyst and organism robustness	(C7) Fuel Toxicity (Benzene)
CLS							
FLS							
CFP							
HYP							
HTL							
S2D							

Evaluation Results will be ranked as follows:

Down-select Results

Strategies moving into Stage II

- Catalysis of Lignocellulosic Sugars
- Fermentation of Lignocellulosic Sugars

Strategies missing key data that will be given a three month extension

- Hydrothermal Liquefaction
 - Need to address pumping, reactor design /cost issues and scalability issues.
- Catalytic Fast Pyrolysis
 - Need to verify consistent results and address data quality concerns

Strategies not moving into Stage II

- Syngas to Distillates
 - Need more R&D on proof of concept
- Hydropyrolysis
 - Unable to generate data that can be replicated
 - Sufficient data to address feasibility not generated
 - High hydrogen use

Thermodynamics and kinetics of biomass conversion

Energy Regimes

High

Gasification -Syngas

Intermediate

- Fast Pyrolysis, Catalytic Fast Pyrolysis, Hydropyrolysis complex mixture
- Liquefaction- aqueous mono-oxygenates, organic -polyphenolics Low
- Sugars Carbohydrate
- ?? Lignin

High Energy Route - Gasification

Technology fairly well developed

Classes of gasifiers

❑Air Blown Gasification (updraft or downdraft)
 – low cost and thermally efficient, product gas not well suited for fuel synthesis – high N₂ content

□Indirect Gasification – good thermal efficiency, syngas not diluted with N_2 – product gas relatively high in tars

Direct Gasification – Good product gas, lower in tars, - high cost of $O_{2,}$, lower thermal efficiency, syngas high in CO_2

□Entrained Flow Gasification – Excellent product gas, essentially no tars – high cost of O₂, low thermal efficiency, higher capital cost because of increased complexity

Gasification Route to Hydrocarbon Fuel

Challenge - Fuel Synthesis is Process/Capital Intensive

Simplify process as shown Results did not meet targets

Intermediate Energy Route - Fast National Advanced **Dvrovsis**

Biofuels Consortium

NABC

http://www.envergenttech.com/index.php

Process:

- 500 °C atm, dry, finely divided, < 1 sec
- Inert atmosphere
- Non-catalytic

Product:

- Medium Btu oil (8,000 Btu/lb)
- High water content and acidity
- Not miscible with hydrocarbons
- Low thermal stability

Biomass Material	Yield (wt%)	Gross Caloric Value (MJ/kg)	Higher Heating Value (Btu/lb)
Hardwood	70-75	17.2 - 19.1	7,400 - 8,000
Softwood	70-80	17.0 - 18.6	7,300 - 8,000
Hardwood Bark	60-65	16.7 - 20.2	7,180 - 8,680
Softwood Bark	55-65	16.7 - 19.8	7,180 - 8,500
Corn Fiber	65-75	17.6 - 20.2	7,570 - 8,680
Bagasse	70-75	18.9 - 19.1	8,100 - 8,200
Waste Paper	60-80	17.0 - 17.2	7,300 - 7,400

Fast pyrolysis oil is converted to fuels in a 2-step process

Hydroprocessed Bio-o Wood)	Petroleum Gasoline		
	Min	Max	Typical
Paraffin, wt%	5.2	9.5	44.2
Iso-Paraffin, wt%	16.7	24.9	
Olefin, wt%	0.6	0.9	4.1
Naphthene, wt%	39.6	55.0	6.9
Aromatic, wt%	9.9	34.6	37.7
Oxygenate, wt%		0.8	

The product carbon recovery based on biomass was about 35%

Process is capital intensive

Logistics issue since pyrolysis oil is highly corrosive and unstable

Process may not be scalable or replicable for large volume fuel production

Holmgren, J. et al. NPRA national meeting, San Diego, March 2008.

Catalytic Fast Pyrolysis

Standard Fast Pyrolysis

Catalytic Fast Pyrolysis

Hydropyrolysis

Process Conditions

T = 375 and 400°C; P_{H2}=42.9 psig (14.4%) at 300 psig

In the absence of a catalyst, hydrogen partial pressure has no affect on biomass pyrolysis

Catalyst has significant impact on liquid product composition

High water content indicates significant hydrodeoxygenation

Time and resources did not allow an optimization of the results

Hyperthermal nozzle

Realistic Linkages

Activation Energies (DFT) kcal mol⁻¹

 H_2C-

CH₂

H₂COH

H₂COH

нсон

ĊH₂

retro-ene	55	concerted
Maccoll	63	elimination
C-0	70	radical
C-C	77	mechanism

retro-ene	50
Maccoll	64
C-0	72
C-C	77

retro-ene	50
Maccoll	66
Grobe	63
C-0	72
C-C	77

David Robisbaud

Concerted elimination dominates radical reactions

Concerted Elimination

Concerted elimination can produce **stable compounds** Radicals are nonspecific reactants – can lead to **condensation reactions** – high char and coke

Need catalysts that promote concerted eliminations **Maccoll Reaction: Concerted Elimination**

C-O Homolytic Bond Scission

phenoxy radical phenylethyl radical

Lignin pyrolysis microreactor

- Work from Brent Shanks (ISU) and Bob Baldwin (NREL)
- Pyrolysis with GC-MS analysis capabilities

GC-MS for pyrolysis vapors

GC-MS data for vapors and condensed products

- Work from Brent Shanks (ISU) and Bob Baldwin (NREL)
- Examination of pyrolysis vapor and condensate

Question: Gas Phase or Condensed Phase?

Pyrolysis chemistry might be controlled by either:Primarily ionic reactions in the condensed phase

Gas phase reactions of initially formed products (bond fissions, radical reactions)
gas phase reactions

Successful modeling of biomass pyrolysis requires knowledge of which chemistry dominates

Evidence suggests that condensed phase reactions more important in pyrolysis of cellulose and lignin

Experimental evidence by Iowa State University:

- Change of carrier gas flow rate (varied residence times) by ~ factor of 3 does not change the product distribution in lignin
- Levoglucosan (major product in cellulose pyrolysis) does not react at 500°C on experimental time scale

Mechanistic evidence by Northwestern University:

- Reaction pathways for all major products observed in the Iowa State cellulose pyrolysis experiments
- Dominant reaction pathways are acid or OH catalyzed <u>ionic</u> reactions (e.g. retro-Aldol reactions)

Q.E.D. → Free radical chemistry (typical for gas phase) not needed to explain primary products of pyrolysis

NATIONAL RENEWABLE ENERGY LABORATORY

Methodology to test importance of gas phase reactions in pyrolysis of cellulose and lignin

Computational evidence from CSM:

 ✓ Approach: Calculate rate expressions of possible gas phase reactions and determine whether they could be relevant at typical biomass pyrolysis conditions

Calculated rate constants for H₂O formation via gas phase reactions are too slow to contribute at 500°C.

Example: H₂O formation via elimination from poly-functional alcohols

Calculated rate constants for molecular elimination of water from hydroxy aldehydes ("sugars") are so slow that they do not contribute even at gasification temperatures (1000K)

Calculated rate constants for gas phase reactions of cellulose fragments also too slow to form smaller oxygenates

rDA-1 Example: Retro-Diels-Alder reaction: 1.E+12 1.E+10 1.E+08 1.E+06 1.E+04 1.E+02 1.E+00 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 1.5 2.5 0.5 1 2 3

Calculated gas-phase rate constant much slower than that suggested by condensed phase rate rule

NATIONAL RENEWABLE ENERGY LABORATORY

Similar Conclusions for Lignin

Example: Decomposition of lignin model compound Phenethyl phenyl ether (PPE)

Again, calculated rate expressions too slow to contribute on fast pyrolysis timescale

NATIONAL RENEWABLE ENERGY LABORATORY

Hydrothermal Liquefaction

Overall carbon yield to hydrotreated product is 50%

Products and Issues

Hydrotreated Bio-Oil SimDis D2887 Results

~30% gasoline and ~50% diesel range

Hydrotreated Products

Challenge: Pumping High Suspended Solids Slurry to High Pressure

Low Energy Route

Virent Technology Overview

Can higher value be extracted from lignin via low energy approaches

Effect of pretreatment on lignin

Pretreatment chemistry on lignin models

Sturgeon, Kim, et al., in progress

Donohoe et al., Biotech. Bioeng., 101, 2008

Lignin effects on enzyme activity

Lignin in genetically modified plants

Saar et al., Bioenergy Res., 3, 2010

Selig et al., Biotech. Prog., 23, 2007

NATIONAL Advanced Biofuels Consortium

Lignin

Computed bond distances and respective bond dissociation National Advanced Biofuels Consol**itickages of different classes of lignin model compounds at** M06-2X/6-311++G(d,p) level

	Bond Distances (Å)		BDE (kcal/mol)		
β-Ο-4	C-C	0-C	C-C	0-C	
L1	1.531	1.431	75		66.38
L2	1.531	1.429	75.46		67.33
L3	1.53	1.427	75.71		64.61
L4	1.531	1.429	75.48		67.04
L5	1.53	1.429	75.58		67.1
L6	1.523	1.424	76.4		68.35
L7	1.53	1.427	75.74		64.3
L8	1.536	1.432	79.09		56.54
L9	1.526	1.412	77.75		59.88
L10	1.54	1.423	76.99		72.3
L11	1.524	1.426	76.25		68.71
L12	1.524	1.425	80.07		55.96
L13	1.523	1.423	76.11		65.91
L14	1.525	1.425	79.75		55.75
L15	1.537	1.438	78.8		53.94
L16	1.523	1.416	76.09		68.45
L17	1.533	1.422	72.05		69.35
L18	1.525	1.41	78.13		59.64
L19	1.523	1.428	77.08		64.39
L20	1.522	1.429	77.73		62.24
L21	1.523	1.428	78.45		61.37
α -0-4		0-C		О-С	
L22		1.428			50.24
L23		1.421			56.43
L24		1.412			57.28
L25		1.422			56.24
L26		1.43			51.32
L27		1.428			48.31
L28		1.421			56.34
L29		1.432			50.62
L30		1.429			48.45
L31		1.427			48.89
4-0-5		0-C		0-C	
L32		1.375			82.54
L33		1.382			77.74

	Bond Distances (Å)	BDE ZPE corrected	
			(kcal/mol)	
β-1	C-C		C-C	
L34	1.541		65.29	
L35	1.546		67.54	
L36	1.541		68.83	
L37	1.541		66.62	
L38	1.54		68.59	
L39	1.543		64.7	
L40	1.542		69.14	
L41	1.541		68.87	
L42	1.546		68.54	
L43	1.338		165.8	
L44	1.339		162.1	
L45	1.546		67.83	
L46	1.541		68.53	
α-1	C-C		C-C	
L47	1.518		91.59	
L48	1.516		92.56	
L49	1.517		93.33	
L50	1.518		90.94	
L51	1.518		86.27	
L52	1.516		92.74	
L53	1.518		90.26	
β-5	C-C		C-C	
L54	1.461		125.5	
L55	1.462		127.1	
L56	1.462		127.6	
L57	1.461		125.2	
5-5	C-C		C-C	
L58	1.484		117.3	
L59	1.485		117.3	
L60	1.484		117	
L61	1.488		118.4	
L62	1.485		117.5	
L63	1.485		114.9	
L64	1.484		115.4	
L65	1.483		116.5	

Low energy catalytic lignin deconstruction

Catalyst design for lignin deconstruction

- Computational/experimental approach
- Model lignin libraries
- Computational results for a known catalyst

Primary target linkage for lignin deconstruction

Target linkage B-O-4

Computational and experimental approach for lignin deconstruction

Catalytic routes under investigation

Nichols et al., JACS, 132, 2010

Ito et al., Nature, 350, 1991

Methodology example: Application to a ruthenium catalyst

Method validation against CBS-QB3 calculations for model compounds

NATIONAL RENEWABLE ENERGY LABORATORY

Λ

Proposed mechanistic cycle for Ru-xantphos catalyst

Two potential pathways for aryl-ether cleavage

NATIONAL RENEWABLE ENERGY LABORATORY

Proposed mechanistic cycle for Ru-xantphos catalyst

Full mechanistic cycle

Effect of substrate on the catalytic cycle

Dimers for computational and experimental screening

Full catalytic cycle for both substrates

Starting configurations of Ru-xantphos catalyst with 2 substrates

O-bound product for HH is more stable because Ru is 6-coordinated

-27.1 (-26.6)

-15.1 (-13.7)

No significant effect for the C-bound product

-29.5 (-27.2)

Current work on catalyst design for lignin deconstruction

- Conducting computational and experimental work with new catalysts
- Screening of Ru-xantphos catalyst with 5 model dimers and lignin polymers

(a) Pd/C, H₂, EtOH, 0 °C (b) CuBr₂, HBr, EtOAc, reflux (c) Cs₂CO₃, DMF, RT (d) NaBH₄, MeOH, RT

Kishimoto et al. Org. Biomol. Chem., 2006.

- Mechanistic cycles such as these provide insight into:
- Ligand design and metal selection
- Electronic structure of transition states
- Combine transition states with HTP ligand screening
- Challenges: designing methods for monitoring catalytic activity on real lignin

Looking forward on substrates

Conclusions and path forward

Significant potential for HC fuels from biomass

- Intermediate and low energy routes look the most promising
 - Intermediate Energy Routes
 - Catalytic Pyrolysis Routes
 - » Better understanding of underlying chemistry and mechanisms
 - Liquefaction Routes
 - » Significant engineering challenges
 - Low Energy Routes
 - Better value at lower capital costs for lignin

Acknowledgements

- Gregg Beckham (NREL)
- Mark Nimlos (NREL)
- Mark Jarvis (NREL)
- Tony Dean (CSM))
- David Robichaud (NREL)
- Matt Sturgeon (NREL)
- Seonah Kim (NREL)
- Stephen Chmely (NREL)
- Yannick Bomble (NREL)
- Chris Chang (NREL)
- Rui Katahira (NREL)

- Brent Shanks (ISU)
- Robert Brown (ISU)
- Linda Broadbelt (NU)
- Heather Mays (NU)
- Hans-Heinrich Cartensen (CSM)
- David Thorn (LANL)
- Randy Cortright (Virent)
- Andrew Held (Virent)
- Neil Renninger (Amyris)
- Dave Dayton (RTI)

Funding:

- National Advanced Biofuels Consortium
- DOE Office of Biomass Program
- NREL Laboratory Directed Research and Development Program

Biomass for Advancing America