

VIRENT IS A WORLD LEADER IN CREATING SUSTAINABLE FUELS AND CHEMICALS.

Our patented BioForming[®] process transforms sugars from renewable feedstocks into everyday products such as gasoline, diesel, jet fuel and chemicals.

Catalytic Conversion of Lignocellulosic Biomass to Conventional Liquid Fuels and Chemicals Randy D. Cortright CTO/Founder

Catalysis and Alternative Feedstocks for the Biofuels Industry

Council for Chemical Research's New Industrial Chemistry and Engineering Workshop

9/31/2011

Virent at a glance

The global leader in catalytic biorefinery research, development, and commercialization

Employees

Partners & Investors

Financial

Infrastructure

25x Development Pilot Plants 1x 10,000 gal/yr Demo Plant

Strategic Investors & Partners

Organization Capabilities

VIRENT

Employees from leading energy, agribusiness and chemical companies; start-ups; and research institutes

The BioForming® Process

Converting Multiple Feedstocks to High Value Hydrocarbons

Familiar to Petrochemical Industry

Similar Reactor Processing Practices Proven Catalytic Scale-Up Engineering Industry Experience Operating at Scale

High Quality Drop-in Products

Premium Hydrocarbon Mixtures Tunable to Produce Desired Blends Adaptable to Provide Chemicals Compatible with Logistics Infrastructure High Energy Content

BioForming Feedstock Advantage

© 2010 – Virent Energy Systems, Inc. – NOT FOR DISTRIBUTION

Virent Technology can Replace > 90% of the Barrel

The US consumes over 18 million barrels of oil per day. 49% is imported from foreign countries.

BioForming® Concept

APR Reaction Pathways to Reactive Intermediates

- Intermediate oxygenate composition impacts downstream processing
- Intermediates can be tuned to achieve different final product goals

Reaction of Oxygenates over ZSM-5

ZSM-5 Chemistry **APR Chemistry** OH Isopropyl Alcohol OH + $2H_2 + CO_2$ Reforming Propylene Dehydration H₂O² Hydride > $H_{2}O +$ Transfer Reducing Equivalents H* H2. Acetic H* Isobutene Acetone Acid Deoxygenation + H₂O Aldol Condensation/ Eneone Cracking 0.5 +0.5Aromatics and Olefin Paraffins Pool Xylose Oligomers Acetic CO2 + H2 Acid O Acetone Ketonization > 0.5 $H_2O + =$ + CO₂ H₂O HMB Dehydration Hydride Ethano Acetaldehyde Transfer ò Н* Hydride Levulinic Acid Transfer Combined Reforming Cellulose Oligomers enzoic acid **APR Products APR Reactants** and Deoxygenation

Hydrolysates APR ZSM-5 Gasoline, Aromatics

Product Development Progress

Date	Jan-2008	July-2008	Sep-2008	Dec-2008	Apr-2009	Eagle
Dienes and Cyclic olefins						
Acidity						
Benzene						
Ketones						
Distillation End Point						

Increasing Quality and Volume

Virent's BioGasoline Product

Premium product with the same components as petroleum derived gasoline

Unleaded Gasoline 115,000 BTUs/Gal

Bioforming BioGasoline +120,000 BTUs/Gal

Ethanol 76,000 BTUs/Gal

~ 20 liters of sugar derived gasoline from Virent's Bioforming process.

Reactor Configurations

- Virent has 20+ continuous and integrated pilot plants
- Contains feed carboy, pumps, heaters, jacketed reactors, cooler, separators
- Automated control allows for 24/7 operation
- Multiple temperature, pressure, & flow measurement points with data collection
- Feed rates range from 0.1 to 40 mL /min
- Plants easily modified to a myriad of process steps
 and configurations

- Scale-up of 100X
- Full length reactors and commercial scale catalyst
- 10,000 gal/yr sugar to gasoline integrated continuous process plant
- Feedstock handling and purification system flexibility
- Fully automated and controlled by DCS (Delta V)
- Product volumes for registration, fleet testing, and Ferrari Scuderia race team

Virent BioGasoline Product Validation

"No Harms" Fleet Trials

Generation of Hydrocarbons from Sugar with In-situ Hydrogen Generation

Recovery of bio-based carbon can be increased by suppressing reforming reactions and using externally supplied hydrogen.

Overall Theoretical Stoichiometry

 $3.58 C_6 H_{12}O_6 \Rightarrow C_{14}H_{30} + 7.5 CO_2 + 6.5 H_2O$ Hydrocarbon contains 65 % of Sugar Carbon Hydrocarbon contains 94% of LHV of Sugar

 $2.33 C_6 H_{12} O_6 \rightarrow C_{14} H_{30} + 14 H_2 O_6$

Hydrocarbon contains 100 % of Sugar Carbon Hydrocarbon contains 140% of LHV of Sugar

Instead, bring in H₂ from external source

Feedstock Optimization

- Natural gas as a supplemental feed can improve economics as a low cost source of hydrogen.
- Internal H₂ Production or External Supply
 - Stoichiometry Example
 - $2.08 C_6 H_{12}O_6 = C_8 H_{18} + 4.5 CO_2 + 3.5 H_2O$
 - $4 C_6 H_{12}O_6 + 27 H_2 = 3 C_8 H_{18} + 24 H_2O$

	Internal H2 (Ibs glucose / gal) {Ibs glucose/Ib HC}	External H2 (lbs glucose / gal) {lbs glucose/lb HC}	Theoretical H2 Requirement (kg H2 /gal)
Octane	19.3 {3.3}	12.3 {2.1}	0.42
Xylene	21.3 {2.9}	16.2 {2.3}	0.31

Process Yield Advantage

BioForming Refinery Break Even

Cash cost break even for a Virent Bioforming refinery producing aromatic chemicals and biogasoline.

Notes:

*Product Values utilize historic Crude to Product Value Ratios from Mid 2007 to Mid 2010 *Major Utilities Cost Assumptions of \$6/mmbtu NG and \$0.07/kw-hr *Includes Variable and Fixed costs

Sugars to Cellulosic Migration Plan

IN DEVELOPMENT

NON-FOOD SUGARS

- Corn Stover
- Bagasse
- Switchgrass
- Miscanthus
- Wood

DECONSTRUCTION TECHNOLOGIES

Liberate sugars from cellulosic biomass cost-effectively

Development Portfolio

National Advanced Biofuel Consortia HCL Cleantech Collaboration NREL Collaboration In-house Technology Development

Virent Deconstruction Partners

 Dilute acid pretreatment and enzyme hydrolysis

• Strong acid pretreatment

• Wet oxidation and enzyme hydrolysis

Virent catalytic deconstruction

Recent Developments - Biogasoline

Cellulosic biomass to gasoline, 6/2/2011

Recent Progress - Biogasoline

NABC Work

- Stover from ISU, pine residues from Catchlight
- NREL, WSU, and Virent making Hydrolysates
- Virent converted hydrolysates into BioFormate[™] gasoline product

Biobased Reformate: Fuels and Chemicals

Virent produces a biobased reformate that is identical to petroleum reformate in an oil refinery.

Reformate is used as a high octane blend component in gasoline

Reformate is a significant source of benzene, toluene, and xylenes used in the chemical industry.

- Reformate
- Pyrolysis Gasoline
- Coke Oven Oil

Nearly 70% of the world's aromatics are derived from reformate.

Shale gas and gasoline market dynamics are reducing the production of reformate from refineries.

Continued upward pricing pressure on aromatics is expected.

Virent's BioGasoline Composition

Virent's BioGasoline product resembles a typical refinery reformate stream which is the dominant feedstock source for many chemicals and plastics in use today.

	Typical Catalytic Reformate (Vol%)	Virent BioGasoline Product (Vol%)
Paraffins	22.5	20.6
Napthenes	0.7	3.9
Aromatics	60.8	64.4
Overall Totals	84.0	88.9
Typical RON	~95 - 105	105

Virent Enables 100% Renewable PET

High Quality, Drop-in Chemicals

chemicalweek

Virent Unveils Biobased P-Xylene Process

2:52 PM MDT | June 6, 2011 | Rebecca Coons

Coca-Cola is working to increase the renewable content of its packaging.

Virent (Madison, WI), a catalytic chemistry firm, says it has successfully produced *para*-xylene (*p*-xylene) from plant-based sugars. The *p*-xylene, which Virent has tradenamed BioFormPX, is identical to *p*-xylene produced via petroleum-based processes and can be used as a drop-in replacement in the value chain, says Kieran Furlong, Virent's commercial manager/chemicals.

The breakthrough will allow polyethylene terepthalate (PET) manufacturers to produce the

commodity resin entirely from renewable resources.

Virent's plant-based para-xylene

Aromatic Product Tree

Benzene, Toluene and Xylenes have a wide range of everyday end use products and are heavily dependent on fossil fuel sources for production.

Current State-of-the-Art PET

http://www.thecoca-colacompany.com/citizenship/plantbottle_basics.html

http://www.thecoca-colacompany.com/citizenship/plantbottle_basics.html

Renewable Jet Fuel

BioForming® Concept

Fully Renewable Synthetic Jet

Boiling Point

Jet Specification Evaluation - RPN Wright Patterson AFB

Specification Test	MIL-DTL- 83133G Spec Requirement	JP-8			
Physical and Chemical Properties					
Heat of Combustion (measured), MJ/Kg	≥42.8	43.3	43.3		
Flash point, °C	≥38	51	40		
Freeze Point, °C	≤-47	-50	<-60		
Density @ 15°C, kg/L	0.775 - 0.840	0.804	0.805		
Distillation					
10% recovered (T ₁₀), °C	≤205	182	164		
EP, °C	≤300	265	290		
Т ₉₀ -Т ₁₀ , °С	≥22	62	86		
Thermal Stability					
Temperature		260°C	325°C		
Tube Deposit Rating	<3	1	1		
Change in Pressure, mm Hg	≤25	2	0		

Excellent freeze point and density due to unique Virent jet composition

High thermal stability ensures low levels of impurities

Virent D-86 comparison to Jet-A

Recent Developments – Jet Fuel Award

DOE Award

- Announced June 10, 2011
- Cellulosic sugars to jet fuel
- \$13.4 MM Grant
- 3 year project

Project Partners

VIRENT

Modeling

Jet fuel production

Corn stover processing

Conventional Diesel GC-GC Analysis

Boiling Point (Carbon Number)

	<i>n</i> -Paraffins	<i>i</i> -paraffins	Naphthenes	Aromatics*	FAME
Cold Flow	-	++	++	++	-
Cetane	++	+	+	-	+
Density	-	-	+	++	++
Volumetric Heating Value	-	-	+	++	-
Energy Content	++	++	+	-	-

Broad component range mixtures and classifications to meet current diesel specifications

*Polynuclear aromatics increase particulate emissions

Adapted from "Diesel Fuels Technical Review" available from Chevron

Virent's Renewable Diesel Properties

<u>Virent's Renewable Diesel</u> Aromatics by HPLC – 8.6% Derived Cetane 45 Cloud Point <-60°C

RFNT

Virent Diesel GC-GC Analysis

DFN

(Carbon Number)

Virent Diesel Specification Compliance

	ASTM D975 #2 Diesel	EN 590	Virent Diesel
Cloud Point	Varies	Varies	<-60°C
Flash Point	>52	>55	56°C
Cetane	>40	>51	45
T95		<360	<340°C
Density	-	820-845 Kg/m ³	Conforming

- Inherently excellent cold flow properties
- High blend potential
- No PNAs → expected low PM emissions
- Cetane can be increased through operational controls

IF YOU CAN GROW IT, we can convert it into everyday fuels, plastics and chemicals.

Virent is replacing crude oil. Visit our <u>website</u> to learn how.