

Catalysis and Alternative Feedstocks in the Biofuels Industry Workshop

Industrial Perspectives on Hydrogen Production: Needs and Opportunities

Bob Cassidy Director, Business Development and Government Affairs Air Liquide Large Industries U.S. LP

University of Delaware September 21, 2011

- Industrial gases in the biofuels production chain
- Hydrogen market
- Hydrogen production
 - Production
 - Off-gas
 - Biosource
- Distribution modes

Air Liquide is the world leader in gases for ...

Industry

- For a wide range of industrial processes for customers:
 - energy, metals, food, chemicals, pharmaceuticals, automotive...

Health

- For hospitals
- For homecare patients
- For hygiene and disinfection

Environment

- For reducing polluting emissions
- For producing the energies of tomorrow

Air Liquide – by the numbers

2010 Data

Unique expertise and skills

The world leader in gases for industry, health and the environment

A technological powerhouse

Innovation

- ✓ €235m innovation budget in 2010
- 8 R&D centers
- 2,500 active patented inventions
- 300 new inventions in 2010
- 100 industrial partnerships
- 120 partnerships with universities and research institutes

AIR LIQUIDE

Molecules and innovative technologies

 H_2 + filling station

LENOXe[™] + anesthesia workstation

O₂ + burners

Industrial Gases in the Biofuels Production Chain

Construction

Process gases

- Hydrogen for hydrotreating
- Oxygen for gasification
- Carbon dioxide for algae production
- Analytical gases
 - Carrier gases
 - Calibration standards
- Construction and maintenance gases
 - Argon mixtures for welding
 - Oxygen and FLAMAL for cutting

Laboratories

R&D/Pilot Facilities

Biorefineries

Hydrogen Requirements for Biofuels

- Major components of lignocellulosic biomass are: lignin, hemicellulose, and cellulose
- Biomass contains significantly more oxygen and moisture than fossil hydrocarbons
- Hydrogen is used to
 - De-oxygenate biomass-derived hydrocarbons
 - Saturate double / triple bonds from high temperature processes
- Hydrogen needs per barrel for biofuels can be significantly greater than for fossil fuels

Biofuels Processing Options

Several options for biofuels processing

- **Fermentation**
- Gasification and catalytic synthesis
- Pyrolysis with product upgrading

With many final products

- Ethanol
- **Methanol**
- Gasoline
- Jet fuel
- NH₃ / Urea
- Mixed alcohols
- Waxes
- **MTBE**
- Acetic Acid
- Aldehydes
- **Fischer-Tropsch hydrocarbons**

9

Uses for Hydrogen, Volume and Market Size

The world leader in gases for industry, health and the environment

10

AIR LIQUIDE

Λ

Needs of Biofuels Producers

Hydrogen must be:

Cost effective

Sustainable

Scalable

Reliable

AIR LIQUIDE

Safe

The world leader in gases for industry, health and the environment **11**

Factors in H₂ Supply Mode

The world leader in gases for industry, health and the environment 12

Scalable Supply

Hydrogen Production Technologies

The world leader in gases for industry, health and the environment 14

Standard SMR Plant

Large Scale H₂ Production Plant

The world leader in gases for industry, health and the environment 20

- Improve efficiency and reduce fugitive emissions
- CO₂ separation and capture
- Burn hydrogen in the SMR

Lurgi CryoCap[™] Reformer

air liquide

Off-gas Recovery and Purification

Biosourcing of Hydrogen

- Methane from landfill gas can be feedstock for H₂ production via SMR
- Biosourcing is viewed as an off-gas source; not a primary production source

Small Quantity Users (1 - 50 m³/hr)

Large Quantity Users (1,000 to 100,000 m³/hr)

U.S. Hydrogen Smaller Usage Operations

Small Quantity Users 1 - 500 m³/hr

AIR LIQUIDE

Increased volume scalability
Lower commitment levels
Usage flexibility
Reduced CAPEX

U.S. Hydrogen Large Usage Options

Large Quantity Users 1,000 – 100,000 m³/hr

Pipeline Network

AIR LIQUIDE

On-purpose Production

Dedicated supply
Improved reliability
Increased economies of scale

Biofuels represent a growth opportunity for the hydrogen market

- Hydrogen production is well established commercially
- Hydrogen can become a critical factor in the planning process of biorefinery projects
- New hydrogen sources and new applications using hydrogen will play an important part in the development of a renewable fuels portfolio

THE WORLD LE ADER IN GASES FOR INDUSTRY, HE ALTH AND THE ENVIRONMENT

The world leader in gases for industry, health and the environment