Catalysis and Alternative Feedstocks in the Biofuels Industry Workshop

Industrial Perspectives on Hydrogen Production: Needs and Opportunities

Bob Cassidy
Director, Business Development and Government Affairs
Air Liquide Large Industries U.S. LP

University of Delaware
September 21, 2011
Agenda

- Industrial gases in the biofuels production chain
- Hydrogen market
- Hydrogen production
 - Production
 - Off-gas
 - Biosource
- Distribution modes
Air Liquide is the world leader in gases for industry, health and the environment.

Industry
- For a wide range of industrial processes for customers:
 - energy, metals, food, chemicals, pharmaceuticals, automotive...

Health
- For hospitals
- For homecare patients
- For hygiene and disinfection

Environment
- For reducing polluting emissions
- For producing the energies of tomorrow

The world leader in gases for industry, health and the environment.
Air Liquide – by the numbers

- 43,600 employees
- Present in 80 countries
- Revenue €13.5 billion
- >1 million customers

2010 Data
Unique expertise and skills

Separating the components of the *air* to take advantage of their properties

Producing molecules from *natural resources* of the Planet

Air Liquide Technologies

- Oxygen
- Nitrogen
- Argon & rare gases

- Hydrogen
- Helium
- Carbon monoxide
- Silane
- Acetylene

...
A technological powerhouse

■ Innovation
- €235m innovation budget in 2010
- 8 R&D centers
- 2,500 active patented inventions
- 300 new inventions in 2010
- 100 industrial partnerships
- 120 partnerships with universities and research institutes

■ Molecules and innovative technologies

H₂ + filling station LENOXe™ + anesthesia workstation O₂ + burners
Industrial Gases in the Biofuels Production Chain

- Process gases
 - Hydrogen for hydrotreating
 - Oxygen for gasification
 - Carbon dioxide for algae production
- Analytical gases
 - Carrier gases
 - Calibration standards
- Construction and maintenance gases
 - Argon mixtures for welding
 - Oxygen and FLAMAL for cutting
Hydrogen Requirements for Biofuels

- Major components of lignocellulosic biomass are: lignin, hemicellulose, and cellulose
- Biomass contains significantly more oxygen and moisture than fossil hydrocarbons
- Hydrogen is used to
 - De-oxygenate biomass-derived hydrocarbons
 - Saturate double / triple bonds from high temperature processes
- Hydrogen needs per barrel for biofuels can be significantly greater than for fossil fuels

Lignin: 15-25%

Hemicellulose: 23-32%

Cellulose: 38-50%

Source: Larry Felix, GTI July 2011
Biofuels Processing Options

Several options for biofuels processing

- Fermentation
- Gasification and catalytic synthesis
- Pyrolysis with product upgrading

With many final products

- Ethanol
- Methanol
- Gasoline
- Jet fuel
- NH₃ / Urea
- Mixed alcohols
- Waxes
- MTBE
- Acetic Acid
- Aldehydes
- Fischer-Tropsch hydrocarbons

Source: Richard Boardman, Idaho National Laboratory, July 2011

Heat, steam and electrical power required
Uses for Hydrogen, Volume and Market Size

The world leader in gases for industry, health and the environment
Needs of Biofuels Producers

Hydrogen must be:

- Sustainable
- Safe
- Scalable
- Cost effective
- Reliable
Factors in H₂ Supply Mode

On Purpose H₂ Production
- Electrolysis
- Off-gas upgrading
- SMR / ATR / POX

Delivered H₂
- Cylinder
- Bulk liquid or tube trailers
- Pipeline Supply

Natural gas cost
Proximity to feed source
Scale
Proximity to H₂ pipelines or existing plants
Fixed / variable cost sensitivity
H₂-rich stream availability
Hydrogen Production Technologies

PRODUCTION

- **POX**
- **ATR**
- **SMR**

PURIFICATION

- **Cryogenic**
- **Membrane**
- **PSA**

Production Streams

- **Hydrocarbon**
- **O₂**
- **Off-gas**
- **Electricity**
- **Water**

Purification Streams

- **Steam**
- **Pure CO**
- **H₂/CO**
- **Pure H₂**

Process Descriptions

- **SMR**: Steam Methane Reformer
- **POX**: Partial Oxydation
- **ATR**: Auto Thermal Reformer
- **PSA**: Pressure Swing Adsorption

(Lab scale)
Standard SMR Plant

- Pretreatment
- Pre-Reformer
- Reformer
- Shift
- PSA

The world leader in gases for industry, health and the environment
Large Scale H₂ Production Plant

Reformer

PSA

Shift
Reducing CO$_2$ Emissions from SMR

How we reduce CO$_2$ emissions

✓ Improve efficiency and reduce fugitive emissions
✓ CO$_2$ separation and capture
✓ Burn hydrogen in the SMR

Lurgi CryoCap™ Reformer
Off-gas Recovery and Purification

Biomass, Coal, or Petcoke → Gasifier → Shift/Gas Cleanup → Industrial Source → PSA → H₂
Biosourcing of Hydrogen

- Methane from landfill gas can be feedstock for H₂ production via SMR

- Biosourcing is viewed as an off-gas source; not a primary production source
Distribution Methods

Small Quantity Users (1 - 50 m³/hr)

Large Quantity Users (1,000 to 100,000 m³/hr)
U.S. Hydrogen Smaller Usage Operations

- Increased volume scalability
- Lower commitment levels
- Usage flexibility
- Reduced CAPEX

Small Quantity Users
1 - 500 m³/hr
U.S. Hydrogen Large Usage Options

On-purpose Production

- Dedicated supply
- Improved reliability
- Increased economies of scale

Large Quantity Users
1,000 – 100,000 m³/hr

Pipeline Network
Outlook and Conclusions

- Biofuels represent a growth opportunity for the hydrogen market
- Hydrogen production is well established commercially
- Hydrogen can become a critical factor in the planning process of biorefinery projects
- New hydrogen sources and new applications using hydrogen will play an important part in the development of a renewable fuels portfolio
THE WORLD LEADER IN GASES FOR INDUSTRY, HEALTH AND THE ENVIRONMENT

AIR LIQUIDE

The world leader in gases for industry, health and the environment