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Introduction 

• Many electronic devices are sensitive to 
moisture (e.g. OLEDs, OPV, CIGS, CdTe). 

• For some applications we would like to have 
a transparent flexible moisture barrier 
material. 
o Ease of application. 

o Weight limits for some structures. 

o Here I will explain the theory behind why such low 
permeation is necessary and how to prevent 
moisture ingress. 
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Outline 

• Permeation through barrier 
films. 25 y requirements. 

• Diffusion from the module 
edges. 

• Edge seals 
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How Does WVTR Relate to Total Permeation? 

This depicts how much water would get in if it was consumed immediately. 
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Moisture in Breathable Front-Sheets 

Moisture Permation Assumptions: 

(1) CEVA not a function of position X (i.e. DEVA>>DB) 

(2) WVTR is proportional to DCB=C(0)-C(lB) 
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Time Constant for Water Ingress 
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Time Constant for Water Ingress 

lEVA =0.46 mm, T=27 oC, CSat,EVA=0.0022 g/cm3  

lPET=0.10 mm, lPEN=0.10 mm, lPCTFE=0.022 mm 

         PET PEN PCTFE  

  1/2 =  0.22 0.91 5.5 (day)   

For 1/2=25 years need 0.8·10-4 g/m2/day 

At 1·10-3 g/m2/day, the encapsulant  will have a half 

time of 1.9 y. This short time frame is insignificant 

compared to a 25 y warranty. 
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Encapsulant Materials Structures 
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Significantly More Adsorbent Polymers Exist 

A 10X more water adsorbent polymer may reduce the barrier requirements by a factor of 10. 
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EVA Allows Significant Moisture Ingress From Edges 
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Alternative Encapsulants Slow Down Moisture Ingress 
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Determining Moisture Ingress Distance From Edges 

M.D. Kempe, A. A. Dameron, M.O. Reese, to be submitted to Progress in Photovoltaics (2012) 

PDMS EVA TPO Ionomer #1 PDMS EVA TPO Ionomer #1
Munich, Germany 19.5 23.3 28.3 29.2 30.3 38.2 47.7 49.2
Denver, Colorado 25.8 30.1 35.3 36.2 40.2 48.4 56.7 57.9
Miami, Florida 33.8 35.6 37.9 38.3 44.4 48.9 54.3 55.2
Albuquerque, New Mexico 30.6 34.6 39.4 40.1 46.4 54.0 61.3 62.4
Bangkok, Thialand 38.0 39.7 42.0 42.4 48.9 53.4 58.9 59.8
Phoenix, Arizona 40.6 40.6 48.7 44.3 56.6 63.8 71.1 72.1
Riyadh,    Saudi Arabia 42.3 45.8 50.1 50.8 58.0 65.0 72.2 73.3

Rack Mounted Insulated Back
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will be at 5% of the 
equilibrium 
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EaPDMS=27 kJ/mol 
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EaIonomer#1=56 kJ/mol 
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Test Sample Designed to Mimic Module Edge 

Seal Encapsulant

Glass

Glass

H2O

w

50 mm
Glass (3.18 mm)
Polymer Film (~0.5 mm)
Ca (100 nm)
Glass (3.18 mm)

H2O

Ca + 2 H20 → Ca(OH)2 + H2 

Module Edge 
 
 
 
 
Test Sample 

n

Polyisobutylene

Desiccant 
(e.g. CaO or molecular sieves, 

Preferably type 3A Molecular Steve 
that does not absorb O2 and N2) 

Edge Seals + 



14 

Oxidation of Ca Indicates Moisture Ingress 

  Ca + 2 H20 → Ca(OH)2 + H2 

Mirror-Like → Transparent 
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50 mm 

Unexposed            1500 h, 85⁰C, 85% RH 
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Moisture Ingress Rate Governed by Diffusion 

15 

H2O 

H2O 

Moisture ingress measured at 45ºC and 85ºC, with RH held at 85%, and at lower 
levels using saturated salt solutions of LiCl, MgCl, or NaNO3. 
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NaNO₃ 67% 59%

MgCl 31% 25%

LiCl 11% 10%
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Edge Seal Modeling 

%100

%RH
eSS kT

Ea

om

s






















 kT

Ea

oeff

D

eDD

Mobile phase water absorption is split between the 

polymer matrix and the mineral components. 

Assume linearity with relative humidity. 

Mobile phase water diffusivity is an effective diffusivity. 

This accounts for a rapid equilibration between adsorbed 

and dissolved water. 

A non-reversible 

reaction with water 

that immobilizes the 

water. 
OHR

2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 20 40 60 80 100

K
 (

cm
/h

1
/2

)

% RH

85⁰C

45⁰C

PIB #2

Values for the 5 constants were 
found from absorption 
measurements and a fit to the data. 



17 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10

In
gr

e
ss

 D
e

p
th

 (c
m

)

Time (Years)

Denver Colorado, PIB #2

Insulated Back, Glass/Polymer

Close Roof, Glass/Glass

Open Rack, glass/glass

Open Rack, Glass/Polymer

Square Root Relation Works to Longer Times 

Denver Colorado 

Used TMY3 Data and Temperature estimate methods from to King et al. 

tKX 



18 

Results for Different Climates 

Glass/Polymer Modules. 

A sensitivity analysis gave about ±15% on K and Width, and ±30% on 25 yr equivalent time. 
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What edge seal parameters are important? 

M. D. Kempe, A. A. Dameron, T. J. Moricone, M.O. Reese, “Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Appilcations, 35th IEEE 
PVSC, Honolulu, HI (2010). 

1. Adhesion is the most important parameter. 
a) Must be maintained after environmental exposure. 

b) Residual stress in glass will affect adhesion. 

c) Material may expand as it absorbs water. 

d) Good surface preparation is necessary. 

2. Breakthrough time is the next most important. 
a) The 12 mm edge delete perimeter should be wide enough to keep 

moisture out. 

3. Module mounting configuration is not important. 
a) Hotter installations tend to dry out the module partially countering the 

effects of increased diffusivity. 

4. The steady state transmission is less important.  
a) The amount of permeate is very low. 

b) Ideally one will not reach steady state. 
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Conclusions 

• An ingress half time of 25 years is needed. For 
typical barriers and encapsulants, a WVTR of 
less than 0.8·10-4 g/m2/day or better is needed.  

• High solubility encapsulants may decrease the 
barrier needs to as low as 1·10-3 g/m2/day or 
better. 

• With impermeable front and backsheets, very 
low diffusivity polymers can limit moisture 
ingress to a few cm from the edges. 

• A PIB based edge seal width of 1 cm should be 
able to prevent moisture ingress. 
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