Barrier Technologies Workshop

Practical Principles for Ultrabarrier Films

G.L. Graff, M.E. Gross, P.E. Burrows, W.D.
Bennett, C.C. Bonham, P.M. Martin, E.S. Mast,
'M.R. Zumhoff, M.G. Hall, D.W. Matson, L. Moro,

- N. M. Rutherford and R.E. Williford

| 'Pacific Northwest National Laboratogy

e e e e

LBl B SNl LBl Bl il Nl e 4 = |



iy

WLLIOWE 10



Note, this is a |\I/|_(I)rrcl;;[)c|)\]; ||||||||||||||||||-»
necessary but measurement -
NOT .Sl.JffICIen'[ g’ 2
condition as = = =)
display size 3 T S =
increases © O 2 £
OLED g S = £ <
(- N—’ -
<= : o2 g - ou
Requirement o -y
ULTRA- a e 5 L £
BARRIERS ]
mmﬂmmﬂmmmmmq
6 4 D
10 10 10 10 10° 10"

H,O Permeation Rate (g/m?/day at 25°C)



Apparent Permeability (cc-em/cm?-s-cm Hg)

Defects dominate gas permeation
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e permeation is defect controlled
« permeation not following a solubility/diffusivity relation

da Silva Sobrinho, JVST A 18(1),2000
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Defects dominate gas permeation

Activated rate theory P = P exp(E+RT)

6 ' .
5 ‘\.\_ PET Film type EA
—
4 d (KJ/mol + 3)
%‘ *1 | | PET 27
5 2
;- PET/AIOX 33
0 PET/ITO 29
-1
3.1 3.2 3.3 34 35 36
- 1000/T (1/K)

B.M. Henry et.al., Thin Solid Films 382 (2001) 194
Rate controlling mechanism is diffusion of O, through PET



Thin-film coatings
Low temperature vacuum deposition leaves defects!

Metallized PP Film (control)

e A IR

xS000 T Spm 21kU 10mm
#3097 NEEDLE LosaT
1024 x 960 LOSAT—-3.TIF

Intrinsic

Metallized Acrylate Coated PP Film
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Sources of Defects

Intrinsic

e poor deposition (spitting)
e columnar growth

e stress cracking

e grain boundaries

e low density (porous) films

Extrinsic

o particles / debris
o surface roughness
e topography (step edges)

#2e9pr91530

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Key Requirements for Ultra-Barriers

UNCOATED OTR/COATED OTR

'BARRIER IMPROVEMENT (with oxide coating)
vs SUBSTRATE SURFACE ROUGHNESS

35.00
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RMS SURFACE ROUGHNESS of SUBSTRATE (microns)

Substrate surface roughness generates defects \?7/
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Key Requirements for Ultra-Barriers

- Surface roughness

Native PET Native PET + 25nm Ta Native PET + 1.5um poly

ﬂ.ﬂﬂ‘ um 2086 Poly 60 deg. tilt 2'_]'93_!““

Affinito, e al., Thin Solid Films, 290-91, 63, 1996
Conformal Vacuum PVD/CVD replicate surface features

20.00, um

Mylar G0 deg. tilt |

Non-conformal polymer deposition levels surface \:?‘/
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Key Parameters for Ultra-Barrier Layers

- critical film thickness required (.)
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0 ’ <> - e 0 ; ‘ ‘ ; ; ‘
0 10 20 30 40 50 0 5 10 15 20 25 30 35
Alumina Film Thickness (nm) Alumina Film Thickness (nm)
PNNL barrier on PET Phillips, R., US# 5,792,550

- (A.) function of deposition process / substrate / barrier chemistry
- (A) for batch tool = 37.5 nm; for r2r = 52.5nm

Kapoor, et. al., SVC 505/856 2006 ~
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Key Requirements for Ultra-Barriers

Deposition process / conditions

OXYGEN PERMEATION RATES FOR VARIOUS PMLAOXIDE
MULTILAYERS A8 A FUNCTION OF OXIDE DEPOSITION METHOD

100.000 e st
DEPOSitiOﬂ Method OTR (CCII’ﬁId) % It ..E e-beam evaporated : Mainly Reactively Sputtered
= samples r Samples ¥
.E'lﬂ,D'UU “ED .,,E!.LUE
EB-Evaporation 15-70 ; SENSOR
PE-CVD 4 E 1.000 Samples With Static
B Handling Problems
Test Above This Line
Sputtering 0.5 2 - ' And Samples
E 0.100 : : WITHOUT Static
=) ! Problems
- Test Below This Line
Yamada et al., SVC Proc., 28, 1995 ‘E‘ 0.010 .
] .
= . ‘
| . | :
40-80 nm SIOx on PET o.001 LA, ll

PPPPEEEEEEEEERRERRRRRRRRR

COATING DEPOSITION METHOD (P=FPET,
E=PML/e-beam evaporated ALO,/PML/PET - PML Layers UV cured,

R=PML/Reactively Sputtered AL O,/PML/PET - PML Layers UV cured)

Affinito et al., Thin Sol. Films, 308, 1997

- quality of inorganic film is critical 7
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Key Requirements for Ultra-Barriers

Single layer/dyad performance level

SAMPLE NAME

MEASURED VALUE

2/5/99-02-ITO

2/5/99-02

15 our best jud,
dings contained herein,

ce/100in’*/24Hours

less than 0.0003
less than 0.0003

less than 0,0003
less than 00003

Test Operator: Howard Immel

Date; 2-12-99

based on work done, bul the company (MOCON) sssumes no lishility whatsoever in connection with
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Insert into multilayer design
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Key Requirements - Summary

» Eliminate / minimize surface roughness

» Deposit highest quality inorganic layer(s) possible
» Determine critical thickness for inorganic layer(s)
» Minimize particulate / debris

- minimize sources of intrinsic and extrinsic defects!

~7

Pacific Northwest
NATIONAL LABORATORY

13 Proudly Operated by Battelle Since 1965



Understanding Permeation Through
Complex Barrier Structures

J. Applied Physics, 96, 4, 1840 (2004)
Flexible Flat Panel Displays, John Wiley & Sons,
Gregory P. Crawford (editor), 57-75 (2005)

—
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Mechanisms Approach:

Steady-state
(Fss) regime
(previous work)

Transient
regime
(new)

¥ slope=DCII

Q
. time
SS=3Lag
] ] Direct determination of “D”” from layer
Single Layer equations thickness and gas fluence

Lag time = |12/6D — calculate diffusivity (D)

S = Fss |/ (DAP) — calculate solubility (S) ~ 7
J. Crank, The Mathematics of Diffusion, 1975 PECiﬂ%ONNg[tﬂ‘a'gﬁﬁgm

15
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J. Crank, The Mathematics of Diffusion, Claredon University Press (1975)

* Single layer, concentration profile of vapor as a function of distance and time; C(x,t).

* Non-condensable vapor is saturated in the carrier gas at a fixed concentration of C, on the
“upstream” side of the layer and maintained at zero on the downstream side by a sweep gas, zero
initial concentration in the layer.

 Fick’s second law: DifoSiVity
Dn? 72t
X 2C. =1 . ([ nax) —=
C(x,t)=C/|1-—]——=) —sin|—]e '"w—_Layer
| T h=1 N | thickness

*  Obtain flux, F, by differentiation with respect to distance (Fick’s first law).
* Integrate flux at the downstream surface (x = I) over time to give the total mass transmitted Q:

DIC, IC, 2IC, Z( 1) ot

t
Q(t) = [F(x=1,t)dt'= e
t'=0 72- n=1 n’
e Astbecomes large:
DC |© . Fe.l
Q(t > ) = t———1| : Permeability = —=- = DS
6D AP
steady state flux (F,,) Lag time (L) Solubility (S)

16



Approach: Fickian models

Substitute measured D & S into multi-layer equations for...

Pro

R = Steady state flux (Fss
Yo /05, 0.5, oy, ! (Fs9)

£t i)

i=1 m=1

[ 1 Lag time (L
Lag:{z%nx,ﬂ Jow Wl . . 9 ( )
allo &l Sl
Ash Barrer & Palmer, Brit. J. Appl. Phys, 16, 884, 1965 %
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Our Test Structures:

combine Mocon measurements
with Fickian diffusion models

Need to
Permeability = Diffusivity x Solubility determine
(P=DS) D&S
S e U T — JAIOX
> use simple structures with =~ i (0.037 )
known thickness P1 (0.34um)
= PET/P1
"PET/P1/AIOX/P2
»degas substrate/barrier film PET
» measure fluence as a function (177.8 pm)
of time (Mocon)

Pacific Northwest
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P1

Barrier Mechanisms

PET
Polymer layers (PET/P1)
A —
Steady state fluence=-0.336+0.0032857*t
Lag=102.26 mins (6135.68 sec)
6 thickness=178 microns 7
D=8.62E ° cm~2/sec ]
~E :
- i
(@) |
3y ]
O E
S ]
D ]
=) ]
= ]
0 500 1000 1500 2000

time, minutes

D = 8.5x10° cm?/s S =0.17 g/cm3/atm o

Pacific Northwest
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P2 AlOx

Barrier Mechanisms — AlOx layers P
PET
0.06 7
- Lag =22.1hr
0.057 No simultaneous solution to lag time
< - and equilibrium permeation
= [ equations
> 0.041 But, if 1 > 200 um for the polymer layers
® i D for bulk Al203 is ~ 10
© 0.03 D(AIOX) = 1.4 x 1013 cm?/s < s
0 . S(AlOx)=0.02 g/cm?3/atm AlOX layer must have cLefects
L g 02,: Consistent with 10% coverage
L of water on a 37nm thick AlOx
[ layer containing 1um diameter
0.011 cylindrical defects spaced 100
- m apart at 38°C (PH, O =
j oo 8.067patm) ( |2
O "“M ‘ 1 ‘ : : : i : ‘ ‘ ‘ I
0 500 1000 1500 2000 2500 3000

Time (min)

20



The Role of Defects in Permeation

Defect Spacing (um)
I(P1)= [t2 + (s/2)3]Y2 ~

|< s/2 >|
Physical ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' | barrier
Thickness ‘ Diffusion path polymer
(nm) | barrier
< >
“Effective
Thickness”
-diffusion of gas in x-y plane dominates i { i { i i | PET
. . MV 2
-results in extremely long “effective” N AN by
diffusion path Y
,’/!’/!/,’l |77 7 77 AL AIOX

21



Barrier Mechanism

Summary of calculated layer properties

- D(PET)=D(P1)=D(P2) = 8.5x10-° cm?/s
- Handbook values: PET = Acrylic =4 x 10° cm?/s

- S(PET)=S(P1)=S(P2) = 0.17 g/cm?3/atm
- Handbook values: PET = 0.17, Acrylic = 0.19

-D(AlOX) = 1.4x101 cm?/s (sapphire ~10-30 cm?/s)
-S(AIOx) = 0.029 g/cm?/atm (equates to ~10% surface coverage)

- 1(P2) = %2 defect spacing in AlOx layers (not physical thickness)

22



Barrier Mechanisms — Defect model

D(AIOX)=D,f, + Dy f,

A, = total surface
area without defe
(D=102%cm?/s) —
f,=A,/s?

cts

Ap = total surface

# area of defects

| (D=10°cm?/s)

fo=Ap /S?

o for D=1.4x10 cm?/s, Ay A, ~1:10,000, Fluxpy:Flux, ~5x108:1

e essentially all the gas flux is through the defects

Proudly

~7"

Pacific Northwest
NATIONAL I_ABOR/?E)RY
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Barrier Mechanisms — Defect model

D(AIOX)=D,f, + Dy f,

10°

>N
)
lpm =
diameter 6 C
10 S
< N
E 104 Illlllul’rllll..llllll.. - g
(] - " " —
- 7 . _ =
a %" . + . (@))
5 100 : .~ -
Ie5) .- n  —
—-— -~ . : - —_—— 1.E-08 )
A o -~ | —8 - 1E-10 O
: -5 — & - 1E-12 D
1 D - -%-- 1.E-14 —
L -1 -+ 1LE16 1=
K- _ .- —a- - 1.E-18 -
K : Y -.@--1.E-20 —

0.01 R Y B S S

10° 10° 10 108
Defect Spacing (A)
~200um spacing between defects @ D4 = 10-3cm?/s %
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What do the models teach us?

o

Pacific Northwest
NATIONAL LABORATORY
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Steady State (Single Layer) Regime

Steady-state
regime

Transient
_ (Fss)

regime : — T T

_ = slope=DCII S I N B
o (lag time) iof 0 1 PET

: -ur v v vy ¢,;,_
\3:¢i,;‘", ''''' ’ P1

v/ y

| L [L=—_=" AlO,

time
Lag=I4/6D SS=3Lag

Pacific Northwest
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Why not use One Inorganic Layer?

Number of dyads required to achieve F¢ = 10-° g/m?/d

31077 ——1—

AlOx Effective Diffusivity (cm?/sec)

251017 -
21017 —
15100 [
11077 —

51018 [

(f

T T T T

Y = MO + M1*X
MO| -4.2052e-22
M1 2.2163e-18
R 1

T T T T T

T T T T

o <1078 cm?/s
required to achieve
OLED target Fss

T T

P

Very difficult to

0 1 | 1 L 1

Number of Dyads

6

8

10

2 manufacture

using PVD or

* equivalent to Inm defects @ 10004m spacing ~\/p methods

e or 10nm defects @ 10,000 um spacing

Pacific Northwest
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Why not use One Inorganic Layer?

Symmorphix — Magnetron sputtered Al,O,:SIO,

Ca test of pre-cleaned vs. non cleaned PEN after 569Hrs in
) R AL 60C/90%RH
PRI .i-r?ﬂ,.:_'l.'“ I

As received substrate Cleaned sul?strate
Pakbaz, H., OSC04 Europe (9/27/2004) followed by barrier before barrier dep
deposition

Measured WVTR of 1-5 x 104 g/m?/d

25 nm Al,O, deposited by ALD: WVTR of <1 x 10~ g/m?/d
(Zhang, Thin Solid Films 517, 2009)

~7
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Single dyad barrier on glass

CHEIL INDUSTRIES
> WVTR<10¢ g/m2/day =
:z B . Condition Ave\;?s;:fzz?:ghrs
——
e ‘ A 3.09E-07
cad . B 3.91E-07
. 1000h at 85C/85% RH ¢ 4.06E-07
T . . C . E E 3.53E-07

"Barrier on PEN sheets chel mousTrES GZTTT™

+ Typical permeation measured by
Ca-test for processes with 100%
yield:

L. Moro, et. al.,

Flextech Workshop

Sep. 14, 2011

(with permission)

— WVTR @ 85/85 = 2-6x 10 g/m*-day
* WVTR @ 20/50< 1x 107 gfm2-day

i
ol
HHI_
|

29



Transient (Multilayer) Regime

Steady-state
regime

Transient
regime (Fss)
(Iag tlmE) ¥ slope=DCII

PhM118 28.08kV %X45.0K  '667nm

Lag=I4/6D

Pacific Northwest
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Application of models to multilayer systems
Steady state flux (Fss) calculations with varying D(AIOXx)

007 ————F+——1 .
—o— Flux(g/m2/day),100microns
—8 - Flux(g/m2/day),500microns ]
0.06 — o - Flux(g/m2/day),1000microns j
R - -% - - Flux(g/m2/day),5000microns § A
= I
@ 0.05 [
U =
NN ]
E goa [,
(@) 5
N
x i
= 0.03 [
LL 5
0.02 |
1 15 2 2.5 3 3.5 4 4.5 5

Number of Dyads

calculated values are orders of magnitude higher %
than the empirical data

Pacific Northwest
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Application of models to multilayer systems

Flux(g/m?/day)

Steady state flux (Fss) calculations

10 ! voon T | L oot | o

—e— Flux(g/m2/day)
wo@e Flux (expmnt

0.1

0.01

0.001
0.0001

107

1 1 1 1 1 1 1 1 | 1 1 1 1
0 1 2

10

Number of Dyads

e poor fit of models to empirical data
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Application of models to multilayer systems

Lag time (L) calculations

3 | ) | ! ! |
25 [ K —e— Lag(yrs),100microns N
- p —8 - Lag(yrs),500microns 1
— o - Lag(yrs),1000microns
D oL X - -x - - Lag(yrs),5000microns 2 ¢
5°F o
© _ g
E15 [ s -
= R 1
o)
_ i
3 - i
1 - - —
- — ]
- 4 D/
05 [ -7 - ] .
t -~ o — Lag time Is
L _ - T _o— o 7 ) >2000 hours
0 9—; — +. 1 T 1 U 1 ! ! 1 Y 1 1 1
1 2 3 4 5

Number of Dyads

o lag times are substantial (years)!
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Application of models to multilayer systems

Relative importance of 10x change in defect

spacing on Fss versus L
2.5 _""I""I""I""I""I""I""I"": 0.07 Lagtlme

—e— Lag(yrs),100microns
3 - ==~ Lag(yrs),1000microns Change
!
- = =X==Flux(g/m2/day),1000microns
% 15 [ ]
7 1 g
05 |
0 éﬁ_:;:l—-gﬂ ------
- Number of Dyads
* Fss decreases by <0.005 g/m?/d Fss chan%%/
* L INcreases by >1OX Pacific Northwest
NATIONAL LABORATORY
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Polymer effects in multilayer systems

Polymer “D” effects — 5dyad stack

10 LA B B UL IR NI N LS LLE N LA 0.02
_ " m—=— time(yrs),100micron i
D <1O 10 . = = ¢ = = time(yrs),1000micron
required to g - : - »
. _ " =g flux(g/m2/day),100micron -4 0015 8
Improve Lag N ' = = x = = flux(g/m2/day),1000micron | g
tlme | : §
2 - 001 X
E A 5
S =
] &S
0.005
—+—Cannot attain Fss
] <10 g/m¥d
0
1012 1012 1010 109 108 107 10

Polymer Diffusivity (cm2/sec)

Practical range for polymers: D = 10 to 10-°cm?/s “%

Pacific Northwest
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Polymer effects in multilayer systems

S>1.0
required to
improve Lag
time

Lag Time (yrs)

Practical range for polymers: S=0.01t0 0.5

10

/-

Polymer “S” effects — 5dyad stack

T T T LI B || T T T LI B || T T T LI B ||
=8 time(yrs), 100micron =g flux(g/m2/day), 100micron
= = &= = time(yrs),1000micron = = x = = flux(g/m2/day), 1000micron
.
6 B x*
.
.’
4 = : .
.
[ A %
.
o
2 Lo
L H i4
.o
0 wm)-> & % —_—
0.0001 0.001 0.0 0.1

Polymer Solubility (g/cm3/atm)

) 0.02
w
~ 0015 g
Q
<
5 ¢
- 7
-4 001 %
: g
3
N
o
2
< 0.005
L1l 0

Cannot attain Fss

<T0% g/m?/d

Pacific Northwest
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Vii.

Reported Defect Sizes and Spacings in Thin Films

Defect Defect Defect Coating | Deposition | Substrate | Ref.
diameter | density Spacing | material Method

(pm) (mm) (nm)
1.2 11-1100 30 -300 SiO, PECVD PET i
1.2 5-1000 32 - 450 Si;N, PECVD PET [
2.0 25-400 50 - 200 Al evap PET i
2.0 100-300 58 - 100 Al evap PET ii
4-6 200 71 Al sputtering PET v

1.0-2.8 600 41 AION, sputtering PET Y
0.8 100-1000 32-100 Al evap BOPP Vi
1.0 700 38 AION, sputtering PET vii

Construct hypothetical 5-dyad stacks using measured defect distributions
. da Silva Sobrinho, G. Czeremuszkin, M. Latrache and M. R. Wertheimer, J. Vac. Sci. Technol. A, 18, 1, 149 (2000).

. H. H. Jamieson and A. H. Windle, J. Mater. Sci., 18, 64 (1983)
. Chatham, Surfaces and Coatings Technology, 78, 1 (1996)

. G. Erlat et.al., Thin Solid Films, 388, 78-86 (2001)

. Hanika, H.-C. Langowski and W. Peukert, 46th Annual Tech. Conf. Preceedings. Soc. Vac. Coat., 592-599 (2003)

S
E
H
H. Hanika, H.-C. Langowski and U. Moosheimer, 45th Annual Tech. Conf. Preceedings, Soc. Vac. Coat., 519-24 (2002)
A
H
A

. G. Erlat, B. M. Henry, C. R. M. Grovenor, A. G. D. Briggs, R. J. Chater and Y. Tsukahara, J. Phys. Chem. B, 108, 883-

890 (2004)
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Thin-film Barrier “Regimes”

Single layer i Multilayer regime Polymer regime
regime : Barrier performance ; lit id
J : achieved fromL + Fss (poor quality oxide)
A : AL : A
/ N O _ _ N e N
Manufacturing : Possible with good  : Cannot meet OLED
challenge : deposition process barrier specifications
. @ < .
= £2 2
<+ 3 S g =-—p
Q ° B S -
o L o > LU
n £ o o O
ik > o S5
Sa Z 3

| LR LLLY BRI AL, BN LLL, BN, B LLLY LI L, LR, L, IRk Bl
10*° 10*° 10" 10% 10" 10°
“Effective” Diffusivity (cm?/s) of inorganic layer(s) -
Pacific No:ﬁ

NATIONAL LABORATORY
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Conclusions

» High quality inorganic films coupled with a multilayer
architecture are necessary to achieve OLED barrier
requirements

» Lag time (transient diffusion), not steady-state flux, has a
significant effect on gas permeation in these multilayer
thin-film systems

» Consideration of steady state flux, alone, is not sufficient
to describe (and predict) the performance of multilayer
barrier films — must consider the transient regime

Pacific Northwest
NATIONAL LABORATORY
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Implications for Manufacturing

>

>

Greatest gains come from improvinq Inorganic layers (minimize
defects, increase defect spacing and Tower D of AlOx layers)

Lowering{the P (D&S) of the polymer (crosslinking, surface
treatments, composite gradients) will improve the barrier
performance

Once the lag time is exceeded, the steady state flux for the multila?{)er
glyst_ems should exceed the permeation requirement (Fs) for OLE
evices

Multiple polymer/inorganic layering allows use of “high-quality,
manufacturable” thin-films — and does not require *“near-perfect”
Inorganic layers

oorgualitP( (high defect density) inorganic films cannot be used for
OLED applications — even if assembled in multilayer structures

P
Measurement of steady-state diffusion (F<<) may require testin .
Measrer y (Fss) may req g xﬁ/

Pacific Northwest
NATIONAL LABORATORY
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Future Needs

» High rate, low cost, scalable “ultrabarrier quality” thin-film
deposition techniques

» More accurate predictive models — preferably ones that can use single
Iayer/% ad validated data and predict permeation in more complex
assemblies

» Standardized permeability measurement techniques for ultrabarriers
(WVTR of 10-8 to 104 g/m?/d)

» Failure mechanisms (WVTR tolerance) of sensitive electronic devices
(such as thin-film PV or OPV)
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