Barrier Technologies Workshop

Practical Principles for Ultrabarrier Films

G.L. Graff, M.E. Gross, P.E. Burrows, W.D. Bennett, C.C. Bonham, P.M. Martin, E.S. Mast, M.R. Zumhoff, M.G. Hall, D.W. Matson, L. Moro, N. M. Rutherford and R.E. Williford

Pacific Northwest National Laboratory

September 19, 2012

Defects dominate gas permeation

da Silva Sobrinho, JVSTA 18(1),2000

H. Chatham, Surfaces & Coatings Technology 78 (1996) 1-9

- permeation is defect controlled
- permeation <u>not</u> following a solubility/diffusivity relation

Defects dominate gas permeation

Activated rate theory $P = P_o exp^{(-E_A/RT)}$

B.M. Henry et.al., Thin Solid Films 382 (2001) 194

Rate controlling mechanism is diffusion of O₂ through PET

Thin-film coatings

Low temperature vacuum deposition leaves <u>defects</u>!

Metallized PP Film (control)

Metallized Acrylate Coated PP Film

Extrinsic

Intrinsic

Sources of Defects

Intrinsic

- poor deposition (spitting)
- columnar growth
- stress cracking
- grain boundaries
- low density (porous) films

Extrinsic

- particles / debris
- surface roughness
- topography (step edges)

Key Requirements for Ultra-Barriers

Substrate surface roughness generates defects

Key Requirements for Ultra-Barriers

- Surface roughness

Affinito, et al., Thin Solid Films, 290-91, 63, 1996

Conformal Vacuum PVD/CVD replicate surface features

<u>Non-conformal</u> polymer deposition levels surface

Pacific Northwest NATIONAL LABORATORY

Key Parameters for Ultra-Barrier Layers

PNNL barrier on PET

Phillips, R., US# 5,792,550

- (λ_c) function of deposition process / substrate / barrier chemistry

 $-(\lambda_c)$ for batch tool = 37.5 nm; for r2r = 52.5 nm

Kapoor, et. al., SVC 505/856 2006

Pacific Northwest NATIONAL LABORATORY

Key Requirements for Ultra-Barriers

Deposition process / conditions

Deposition Method	OTR (cc/n î /d)		
EB-Evaporation	15-70		
PE-CVD	4		
Sputtering	0.5		

Yamada et al., SVC Proc., 28, 1995

40-80 nm SiOx on PET

E=PML/e-beam evaporated Al₂O₃/PML/PET - PML Layers UV cured, R=PML/Reactively Sputtered Al₂O₃/PML/PET - PML Layers UV cured)

Affinito et al., Thin Sol. Films, 308, 1997

- quality of inorganic film is critical

Key Requirements for Ultra-Barriers

Single layer/dyad performance level

Insert into multilayer design

Key Requirements - Summary

Eliminate / minimize surface roughness

Deposit highest quality inorganic layer(s) possible

Determine critical thickness for inorganic layer(s)

Minimize particulate / debris

- minimize sources of intrinsic and extrinsic defects!

Pacific Northwest

Understanding Permeation Through Complex Barrier Structures

J. Applied Physics, 96, 4, 1840 (2004) <u>Flexible Flat Panel Displays</u>, John Wiley & Sons, Gregory P. Crawford (editor), 57-75 (2005)

Mechanisms Approach:

J. Crank, The Mathematics of Diffusion, Claredon University Press (1975)

- Single layer, concentration profile of vapor as a function of distance and time; C(x,t).
- Non-condensable vapor is saturated in the carrier gas at a fixed concentration of C₁ on the "upstream" side of the layer and maintained at zero on the downstream side by a sweep gas, zero initial concentration in the layer.
 Diffusivity
- Fick's second law:

$$C(x,t) = C_1 \left(1 - \frac{x}{l}\right) - \frac{2C_1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{l}\right) e^{-\frac{Dn^2 \pi^2 t}{l^2}} Layer$$
thickness

- Obtain flux, F, by differentiation with respect to distance (Fick's first law).
- Integrate flux at the downstream surface (x = I) over time to give the total mass transmitted Q:

$$Q(t) = \int_{t'=0}^{t} F(x=l,t) dt' = \frac{DtC_1}{l} - \frac{lC_1}{6} - \frac{2lC_1}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} e^{-\frac{Dn^2\pi^2t}{l^2}}$$

• As *t* becomes large:

steady

$$Q(t \to \infty) = \frac{DC_1}{l} \left(t - \frac{l^2}{6D} \right) : Permeability = \frac{F_{SS}l}{\Delta P} = DS$$

y state flux (F_{ss}) Lag time (L) Solubility (S)

Approach: Fickian models

Substitute measured D & S into multi-layer equations for...

$$F_{ss} = \frac{p_{H_2O}}{\frac{l_1}{D_1S_1} + \frac{l_2}{D_2S_2} + \frac{l_3}{D_3S_3} + \dots + \frac{l_n}{D_nS_n}}$$

Steady state flux (Fss)

$$Lag = \left[\sum_{i=1}^{n} \left[\frac{l_{i}}{D_{i}}\prod_{j=1}^{i-1}K_{j}\right]^{-1} + \sum_{i=1}^{n} \left\{\frac{l_{i}^{2}}{2D_{i}}\sum_{m=1}^{n} \left[\frac{l_{m}}{D_{m}}\prod_{j=1}^{m-1}K_{j}\right] - \frac{l_{i}^{3}}{3D_{i}^{2}}\prod_{j=1}^{i-1}K_{j}\right] + \sum_{i=1}^{n} \left\{\frac{l_{i}}{D_{i}}\prod_{j=1}^{i-1}K_{j}\sum_{\beta=i+1}^{n} \left[\frac{l_{\beta}}{\prod_{j=1}^{\beta-1}K_{j}}\sum_{m=\beta}^{n} \left[\frac{l_{m}}{D_{m}}\prod_{j=1}^{m-1}K_{j}\right] - \frac{l_{\beta}^{2}}{2D_{\beta}}\right]\right\} Lag time (L)$$

Ash Barrer & Palmer, Brit. J. Appl. Phys, 16, 884, 1965

Pacific Northwes NATIONAL LABORATORY

Our Test Structures: combine Mocon measurements with Fickian diffusion models

Permeability = Diffusivity x Solubility (P=DS) Need to determine D & S

- PET/P1
- PET/P1/AIOx/P2
- >degas substrate/barrier film
- measure fluence as a function of time (Mocon)

NATIONAL LABORATORY

Pacific Northwest

The Role of Defects in Permeation

diffusion path

AIO,

Barrier Mechanism

Summary of calculated layer properties

- $D(PET)=D(P1)=D(P2) = 8.5x10^{-9} cm^2/s$ - Handbook values: $PET = Acrylic = 4 x 10^{-9} cm^2/s$

 $-D_{eff}(AlOx) = 1.4x10^{-13} \text{ cm}^2/\text{s} \text{ (sapphire ~}10^{-30} \text{ cm}^2/\text{s})$

 $-S(AlOx) = 0.029 \text{ g/cm}^3/\text{atm}$ (equates to ~10% surface coverage)

- $l(P2) = \frac{1}{2}$ defect spacing in AlOx layers (not physical thickness)

Barrier Mechanisms – Defect model

 $D(AIOx)=D_bf_b + D_D f_D$

- for $D_{eff}=1.4x10^{-13}$ cm²/s, $A_D:A_b \sim 1:10,000$, $Flux_D:Flux_b \sim 5x10^8:1$
- essentially <u>all</u> the gas flux is through the defects

Pacific Northwest NATIONAL LABORATORY 23 Proudly Operated by Battelle Since 1965

Barrier Mechanisms – Defect model

 $D(AIOx)=D_bf_b + D_Df_D$

~200µm spacing between defects @ $D_{eff} = 10^{-13} \text{cm}^2/\text{s}$

What do the models teach us?

Steady State (Single Layer) Regime

Why not use <u>One</u> Inorganic Layer?

Number of dyads required to achieve $F_{SS} = 10^{-6} \text{ g/m}^2/d$

• or 10nm defects @ 10,000 µm spacing

Pacific Northwest NATIONAL LABORATORY

Why not use <u>One</u> Inorganic Layer?

Symmorphix – Magnetron sputtered Al₂O₃:SiO₂

Pakbaz, H., OSC04 Europe (9/27/2004)

As received substrate followed by barrier deposition Cleaned substrate before barrier dep

Measured WVTR of 1-5 x 10^{-4} g/m²/d

25 nm Al_2O_3 deposited by ALD: WVTR of $<1 \times 10^{-5} \text{ g/m}^2/d$ (Zhang, Thin Solid Films 517, 2009)

Pacific Northwest

Single dyad barrier on glass

WVTR<10-6 g/m²/day

Condition	Average of 1000hrs WVTR 20/50
А	3.09E-07
В	3.91E-07
С	4.06E-07
E	3.53E-07

Barrier on PEN sheets

CHEIL INDUSTRIES SAMSUNG

- Typical permeation measured by Ca-test for processes with 100% yield:
 - WVTR @ 85/85 = 2-6 x 10⁻⁶ g/m²-day
 - WVTR @ 20/50 < 1 x 10⁻⁷ g/m²-day

L. Moro, et. al., Flextech Workshop Sep. 14, 2011 (with permission)

Transient (Multilayer) Regime

Pacific Northwest

Steady state flux (Fss) calculations with varying D(AlOx)

calculated values are orders of magnitude higher than the empirical data

NATIONAL LABORATORY

Steady state flux (Fss) calculations

• poor fit of models to empirical data

• lag times are substantial (years)!

Relative importance of 10x change in defect spacing on Fss versus L

Polymer effects in multilayer systems

Polymer "D" effects – 5dyad stack

Practical range for polymers: $D = 10^{-9}$ to 10^{-6} cm²/s

Pacific Northwest NATIONAL LABORATORY

Polymer effects in multilayer systems

Pacific Northwest NATIONAL LABORATORY

Reported Defect Sizes and Spacings in Thin Films

Defect diameter (µm)	Defect density (mm ⁻²)	Defect Spacing (µm)	Coating material	Deposition Method	Substrate	Ref.
1.2	11-1100	30 - 300	SiO ₂	PECVD	PET	i
1.2	5-1000	32 - 450	Si ₃ N ₄	PECVD	PET	i
2.0	25-400	50 - 200	Al	evap	PET	ii
2.0	100-300	58 - 100	Al	evap	PET	iii
4-6	200	71	Al	sputtering	PET	iv
1.0-2.8	600	41	AlO _x N _y	sputtering	PET	V
0.8	100-1000	32 - 100	Al	evap	BOPP	vi
1.0	700	38	AlO _x N _y	sputtering	PET	vii

Construct hypothetical 5-dyad stacks using measured defect distributions

- i. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrache and M. R. Wertheimer, J. Vac. Sci. Technol. A, **18**, 1, 149 (2000).
- ii. E. H. H. Jamieson and A. H. Windle, J. Mater. Sci., 18, 64 (1983)
- iii. H. Chatham, Surfaces and Coatings Technology, 78, 1 (1996)
- iv. H. Hanika, H.-C. Langowski and U. Moosheimer, 45th Annual Tech. Conf. Preceedings, Soc. Vac. Coat., 519-24 (2002)
- v. A. G. Erlat et.al., Thin Solid Films, **388**, 78-86 (2001)
- vi. H. Hanika, H.-C. Langowski and W. Peukert, 46th Annual Tech. Conf. Preceedings. Soc. Vac. Coat., 592-599 (2003)
- vii. A. G. Erlat, B. M. Henry, C. R. M. Grovenor, A. G. D. Briggs, R. J. Chater and Y. Tsukahara, J. Phys. Chem. B, **108**, 883-890 (2004)

Thin-film Barrier "Regimes"

Conclusions

- High quality inorganic films <u>coupled</u> with a multilayer architecture are necessary to achieve OLED barrier requirements
- Lag time (transient diffusion), not steady-state flux, has a significant effect on gas permeation in these multilayer thin-film systems
- Consideration of steady state flux, alone, is not sufficient to describe (and predict) the performance of multilayer barrier films – must consider the transient regime

Implications for Manufacturing

- Greatest gains come from improving inorganic layers (minimize defects, increase defect spacing and lower D_{eff} of AlOx layers)
- Lowering the P (D&S) of the polymer (crosslinking, surface treatments, composite gradients) will improve the barrier performance
- Once the lag time is exceeded, the steady state flux for the multilayer systems should exceed the permeation requirement (F_{SS}) for OLED devices
- Multiple polymer/inorganic layering allows use of "high-quality, manufacturable" thin-films – and does not require "near-perfect" inorganic layers
- Poor quality (high defect density) inorganic films cannot be used for OLED applications – even if assembled in multilayer structures
- Measurement of steady-state diffusion (F_{SS}) may require testing >2000hrs

Future Needs

- High rate, low cost, scalable "ultrabarrier quality" thin-film deposition techniques
- More accurate predictive models preferably ones that can use single layer/dyad validated data and predict permeation in more complex assemblies
- Standardized permeability measurement techniques for ultrabarriers (WVTR of 10⁻⁸ to 10⁻⁴ g/m²/d)
- Failure mechanisms (WVTR tolerance) of sensitive electronic devices (such as thin-film PV or OPV)

