

CONSULTING LTD

Flexible Barrier Materials

Charles A. Bishop C.A.Bishop Consulting Ltd www.cabuk1.co.uk

Barrier materials

Range of barrier performance

Water vapour permeation rate (g/m²/day)

Properties Light barrier Moisture barrier Gas (Oxygen) barrier Odour / taint barrier Modified Atmosphere Packaging - CO₂ - ethylene – etc Chemical / biological / anti-bacterial / anti-microbial / antiseptic EMI/RFI screening, Anti-static Decorative / aesthetics / convenience

Mechanical – containment – heat seal – puncture resistance

Food Degradation

Rancid – fats affected by light & oxygen Soggy – moisture absorption Taint - loss of flavour or alteration of aroma Loss of colour Loss of texture – bloom on surfaces Degradation – mould growth, chemical interaction, etc

Total packaging performance

General Atomics OLED demonstration devices

Permeation

Diffusion coefficients

Diffusion Coefficients

Oxygen in air Oxygen in Water Oxygen in Quartz Oxygen in Silica Oxygen in Silica Gel Oxygen in Polypropylene Oxygen in Polyester

 $D_{02} = 0.15 \text{ cm}^2/\text{s}$

 $D_{02} = 2 \ge 10^{-5} \text{ cm}^2/\text{s}$ at 20°C

$$D_{02} = 10^{-25} \text{ cm}^2/\text{s}$$

$$D_{02} = 10^{-13} \text{ cm}^2/\text{s}$$

$$D_{02} = 10^{-3} \text{ cm}^2/\text{s}$$

$$D_{02} = 10^{-7} \text{ cm}^2/\text{s}$$

$$D_{02} = 10^{-9} \text{ cm}^2/\text{s}$$

Water vapour in air

 $D_{H2O} \approx 0.26 \text{cm}^2/\text{s}$

Basic structures

Polymers or coatings can be with or without fillers

Barrier performance

- Performance of multi-layers dependent upon:-
- Adhesion
 - Dependent upon surface roughness, quality & cleanliness
 - Dependent upon surface energy & wetting (wetting = adhesion)
 - Dependent upon amount & type of surface treatment
 - Dependent upon chemical bonding

• Quality of materials, coating technique & handling

- Including filtration of coatings
- Density of coatings
 - Dependent upon deposition process
- Minimise handling protect fragile coatings

Nucleation & Film Growth

Gold nucleating onto glass

Transmission Electron Micrographs (TEM) 75,000x Magnification

The thickness indicated is for a film of equivalent mass that is continuous & parallel

R.M.Hill Contemp Phys. 1969 Vol 10 No 9 pp 221-240

Nucleation & Film Growth

500,000 x magnification

In reality the coatings can be quite thick but still contain defects or holes that reach the substrate. High surface energy & good wetting help minimise this

Microstructure modification

atoms causing point defects

deposit into shadowed areas

interface & into the substrate surface giving interfacial mixing

Onset of cracking

Sample	SiOx thickness [nm]	Crack Onset Strain [%]		
SiOx / PET (RDO12)	20	3.5		
	10	4.5		

Materials

Polymers / organic materials Substrates Polyester (PET,PEN) Polypropylene (PP, OPP,CPP) Polyethylene, (PE, LDPE, HDPE, Linear LDPE, ULDPE....) Polyamide (Nylon) Biopolymers Others Cyclic Oxalic Copolymers (COCs) Liquid Crystal Polymers (LCPs) Polycarbonate (PC)

Coatings

Ethylene vinyl alcohol (EVOH) - Polyvinyl alcohol (PVOH)

Poly vinyl dichloride (PVdC) – (banned in some countries)

Adhesives (heat seal, lamination, polyurethanes, polyethylene...) Acrylates (inc. in-vacuum coatings) Inorganic coatings Compounds Silica, silicates Alumina Metal oxides – ITO, SnO, ZnO, etc Metal nitrides Metal oxynitrides Metal carbides, oxycarbides, etc Graded compounds

Metals Aluminium

Others

Carbon

Melamine (1,3,5-triazine-2,4,6-triamine)

Kuraray's technology at work

- An inorganic compound is dispersed in a polymeric matrix, to create a tortuous path for gas molecules (long gas diffusion path).
- Molecular movement of the polymer chain is restricted by the inorganic compound (low gas diffusion rate).

Inorganic compound

Polymeric matrix

Barrier Material	Thickness	Oxygen Transmission [ccm/m2/day/atm]	Water Vapour Transmission [g/m2/day/atm]	Deposition Process	Coating type	Relative cost
PET / Blank	12.00 µm	100	64.64			1x
PVDC	24.00 µm	8	0.3			
EVOH	24.00 µm	0.16 - 1.86 *	N/A			3x
m-OPA	15.00 μm	30				
Aluminized PET (single)	~ 30nm	0.31 - 1.55	0.31 - 1.55	Evaporation	Al	2x
Aluminized PET (double)	~ 30nm each	0.03	N/A	Evaporation	Al	~3x
Aluminium on PE	7µm Al	0.001	N/A	Laminated	Al	
SiOx on PET	10 - 80 nm	0.35 - 10**	0.46 - 1.24	Evaporation	SiOx	3x
SiOx on PET or SiOx containing Carbon	10 - 80 nm	0.08 - 1.55	0.5 - 5.0	PECVD	SiOx or Si(C)Ox	3x
Al2O3 on PET	20 nm	1.5	5	Evaporation, or Reactive Evaporation	Al ₂ O ₃	2.25x - 2.5x
Al ₂ O ₃ /SiO _x on PET	50 nm	2.0 - 3.0	1	Evaporation	Al ₂ O ₃ /SiO _x	2.5x - 3x
Al2O3 on PET	<5 nm	~1.5 (improving 0.0001 claimed)	~5 (improving 0.0001 claimed)	ALD - Atomic Layer Deposition	Al ₂ O ₃	aim to be < 2x
Diamond-like Carbon on PET	20 nm	2	1.5	PECVD	Carbon (DLC)	2.5x - 3x
Melamine on PET	$12.00 + 0.25 \mu m$	<5		PVD	Triazine	2.5x - 3x
Melamine on OPP	$20.00 + 0.25 \ \mu m$	30		PVD	Triazine	2.5x - 3x
OPP / Blank	20.00 μm	1600				

* depending on relative humidity and ethylene content ** depending on process

Foil may be annealed periodically

foil - 2.2m wide 2,500 m/min 6 microns thick

Maximum Allowable Pinhole Count in One Square Meter

Foil Gauge	Foil Caliper, µ	Average	Maximum	
28.5	7	423	1584	
35	9	211	1056	
50	13	85	528	
75	18	21	106	
100	25	0	0	

Examples of Typical Foil Pinholes

Pinholes from Al-Fe-Si Constituents

Pinhole from Depression in Foil

Pinhole from rolling Debris

Pinhole from Aluminum Fines Damage

Pinholes

Debris typically >0.5 microns

metalized layer 20 – 100nm

Surface defects

Particle count

debris diameter in microns

Incident Dark Field Optical Microscopy Or Differential Interference Contrast Microscopy

Area used for the analysis was 170 x 170 microns

Magnification 400x.

Average of 6 different fields of view

SEM of defects – FEP IVV Freising

200 nm

EHT = 1.00 kV WD = 6.3 mm

Signal A = SE2 Mag = 30.74 K X

WD = 5.3 mm

FHG IPA 350

Data from tapping AFM: Amplitude

Source of debris

People emit a very large number of particles

standing still humans emit 100,000 particles per minute (ppm) standing up from a sitting position humans emit 2,500,000 ppm (definition of a particle is debris of 0.5 microns or larger)

This comprises hair, skin and micro-salt crystals skin in the range 0.1 - 5 microns Hair in the range 5 - 100 microns

Resolution of eye

A working value ~50 microns (quoted range 10 – 100 microns)

<u>Practical example</u> Human inspection expected to resolve 50% of 50 microns debris on a surface

Activity generating particles	microns
Pollens	10 - 100
Rubbing ordinary painted surface	90
Sliding metal surfaces (unlubricated)	50 to 150
Crumbling or folding paper	60
Rubbing epoxy painted surfaces	30 to 75
Seating and unseating screws	25 to 120
Belt drive	5 to 35
Writing with ballpoint pen on paper	15 to 30

Oligomer growth

PET (442) after prolonged heating 1hr @ 140 Deg C SEM at 2000x magnification Showing growth of 'mer' units into dimers, trimers, etc

Reticulation pinholes

The atoms nucleate on the higher surface energy part of the substrate but not on the low molecular weight contamination

Low molecular weight contamination can be vaporized by depositing atoms preventing any deposition. This low molecular weight material may be oligomer

Stress raisers

Surface defects i.e. dents or bumps lead to defects in the coatings

The coating thinner over the defect (> surface area for same coating thickness) & also the edges of the defect are prone to cracking

Cleaning options

Options for cleaning polymer film surfaces

- Cloth wipe
- Static brush
- Rotating brush
- Air blower / knife
- Vacuum cleaner

Surface contact can cause damage

-Difficult to breakthrough entrained air

- Electrostatic neutralised ultrasonic pulsed air jet & vacuum extract
- -Transfer tack rolls
- -Planarization and/or Overcoating

(best combined with pre-cleaning first)

– Carbon Dioxide 'snow jet'

Polymer pre-layer

Cleaning = fewer, smaller debris & thinner coating

General Atomics – Super sapphire

Sputtered Super Sapphire

HETOSLEHS

INRF 15.0kV 5.6mm x200k

Pre / Post Acrylate Monomer Printing

Polymer layers

Sigma International - Benefits of polymer layers.			
Materials	No.pinholes/unit area		
OPP + Al	1760		
OPP + Polymer + Al	590		
OPP + Al + Polymer	35		

Defects

The polymer is drawn by capillary action into pores thus partially sealing them. Adding a nano-flake further improves the diffusion coefficient of the coatings. Ideally the flake size is small enough to fill and plug any cracks, pores or pinholes in the coating.

Barrier performance

Aluminised PET (single)	~ 30nm	0.31 - 1.55	0.31 - 1.55	Evaporation	Al
Aluminised PET (double)	~ 30nm each	0.03	N/A	Evaporation	Al

When the defect spacing is large compared to the thickness the diffusion path becomes very long as shown above

By comparison a greater density of defects results in the diffusion distance being ~ = equal to the polymer thickness

Polymer / oxide barriers - Barix

Multi-dyad barrier

Fracture cross-section SEM of generic Barix TM film

Glass - Float line process

Glass substrates

30 microns (R &D) 50 microns pilot production

The photograph from Corning shows the edges protected by Kapton tape

Conclusions

- Key to good barrier:
- Substrate quality
 - Surface clean, smooth, flat, minimal defects Bulk - thermally stable, good gauge, well wound

zero or minimal exudate contamination

If you do not get the substrate right – do not bother coating

- **Deposition process**
 - High quality winding tension control
 - Good quality deposition system hygiene
 - **Dense coating minimise defects**
 - Maximise adhesion Manage substrate surface
 - Minimal front surface contact protect coating
 - **High quality handling & storing rolls**

Conclusions

All webs are contaminated with debris (both sides) Most webs would benefit from a physical clean such as by tack-roll (both sides) Many would also benefit from a molecular clean to raise the surface energy to modify chemistry to improve adhesion

Alternative strategy - cover debris using polymer coating - coating may also need plasma treating

Densify coating – minimise porosity & defects

CONSULTING LTD

Thank you for listening

Charles A. Bishop C.A.Bishop Consulting Ltd www.cabuk1.co.uk