

Understanding the Stability of Metal-Organic Frameworks under Humid Conditions

> Krista S. Walton Associate Professor and McClatchey Family Faculty Fellow

Workshop on Measurement Needs in the Adsorption Sciences, NIST November 5-6, 2014

Georgia Institute of Technology • School of Chemical & Biomolecular Engineering 311 Ferst Drive, N.W. • Atlanta, GA 30332-0100 404-894-1838 • www.chbe.gatech.edu

Metal-Organic Frameworks (MOFs)

Promising applications

Drug delivery¹

Heterogeneous catalysis²

Chemical sensing³

Air purification⁴

Clean energy storage⁵

1. Horcajada et al. J. Amer. Chem. Soc. 2008 130, 6774.

2. Lee et al. Chem. Soc. Rev. 2009 38, 1450.

3. Kreno et al. Chem. Rev. 2012 112, 1105.

DeCoste et al. Chem. Rev. 2014 114, 5695.
 Li et al. Chem. Comm. 2010 46, 44.

Georgialnstitute of Technology School of Chemical & Biomolecular Engineering

Designer Materials: Optimize Selectivity, Capacity, Functionality... But

Is it stable?

- Why? Why not? Can it be fixed?

Challenges in Understanding Water Stability

- Not large number of MOF families that can be systematically varied to control for certain features
- Variety of MOFs is high how to generalize results?
- Water stable vs water repellent
- Cyclic stability and aging effects
- Water vapor exposure vs. liquid water
- Relative to other gases/vapors, water adsorption in MOFs has not been widely investigated

MOF Stability: Introduction

- First water isotherm reported by Bülow and coworkers¹ in 2002 (HKUST-1/Cu-BTC)
- Kaskel and coworkers² did more in-depth analysis of water adsorption in HKUST-1 in 2009
- From 2002-2012, only 2-3 studies per year reported water adsorption in MOFs

Wang, Q. M. et al. Microporous Mesoporous Mater. 2002, 55, 217.
 Kusgens, P. et al. Microporous Mesoporous Mater. 2009, 120, 325.

MOF Stability: Introduction

- Since 2012, several features began to emerge as being important contributors to stability:
 - Basicity of the ligand
 - Extent of coordination (metal-ligand bond character)
 - Sterics introduced by ligand functionalization

Burtch, N. C., H. Jasuja, K. S. Walton, *Chemical Reviews*, 2014, 114, 10575-10612.

School of Chemical & Biomolecular Engineering

Defining Water Stability

- Is it stable?
 - Generally means: can the material be exposed to humidity or does it require special handling
- PXRD and BET analysis before and after water exposure
 - Water introduced to sample with carrier gas or to vacuum (instrument dependent)
- Immerse in liquid water
 - MOFs can be stable to vapor but not to aqueous conditions
 - More stringent test

Today's Presentation

- Materials Focus:
 - UiO-66 and MIL-53(AI)
 - Zn-BDC-DABCO (Zn-DMOF)
- Methods:
 - Water vapor adsorption studies
 - NMR, FTIR, molecular modeling
- Classifying water stability

BET Analysis

Quadrasorb from Quantachrome

- Four sample stations with dedicated P0 measurement at each station
- Independent adsorption measurements
- Krypton option for micropore characterization

FIOVAC

Water Vapor Measurements Hiden Isochema IGA-3

- Air is bubbled
 through reservoir
 of water and the
 instrument
 controls humidity
 level
- 0 bar 20 bar
- -196°C-1000°C

UiO-66: Maintain Topology but Change Ligand

UiO-66-X/UiO-67

- We know Zr-BDC (UiO-66) is very stable [1]
- How does functionalization impact stability?
- Some disagreement on effect of ligand length

1. Lillerud et al, 2008, 130, 13850–13851

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Water Adsorption in UiO-66-X at 298 K

UiO-66: Maintain Topology but Change Ligand

UiO-66-X/UiO-67

- We know Zr-BDC (UiO-66) is very stable [1]
- How does functionalization impact stability?
- Some disagreement on effect of ligand length

Breathing Behavior of MIL-53(Al)

W. Mounfield, K. S. Walton, submitted. Loiseau, T. et al.. *Chem-Eur J* **2004**, *10*, 1373

Nanomaterials & Adsorption Lab

WaltonGroup

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Water Vapor Adsorption in MIL-53(AI), 298 K

14 12 - sDMF₁₂₀ Adsorbed Amount (mmol/g) post water sDMF120 - sH₂O (6)10 activated sDMF120 **BET SA change** (5)Intensity 8 $1472 \text{ m}^2/\text{g} \rightarrow 370 \text{ m}^2/\text{g}$ post water sH2O (4)6 No SA change activated sH2O (3) 4 np (2)2 lp (1)0 50 70 80 90 10 15 20 25 30 35 10 20 30 40 60 5 0 20 (degrees) Humidity (%RH)

W. Mounfield, K. S. Walton, submitted.

Nanomaterials &

Adsorption Lab

WaltonGroup

Zn-BDC-DABCO or "DMOF"

N-coordinated zinc from DABCO

DMOF is stable up to 40% RH

DMOF-NH₂ degrades at water exposure well below 40%RH

Dybtsev et al., *Angew. Chem.-Int. Edit.*, 43, 2004. Schoenecker, Walton, et al., *IECR*, 51 (18), 6513–6519.

Impact of Functional Groups on Zn-DMOF Stability

School of Chemical & Biomolecular Engineering

Impact of Functional Groups on Nanomaterials & Adsorption Lab WaltonGroup **Zn-DMOF Stability** HO HO OH OH DABCO BDC-CI **TMBDC** 2,5-dichloro-1,4tetramethyl-1,4-BDC benzenedicarboxylate benzenedicarboxylate OH OH O HO .OH **BDC-X**

2-X 1,4 benzene dicarboxylate

hydroxy (-OH)

bromo (-Br)

X = nitro (-NO₂)

anthracenedicarboxylate

ADC

OH

O

1,4-naphthalenedicarboxylate

NDU

Jasuja, H., K. S. Walton, et al. *Langmuir*, 2012, 28(49), 16874-16880. Georgia Institute

Zn-DMOF-Br PXRD Before/After Water Exposure

Jasuja, H., K. S. Walton, et al. *Langmuir*, 2012, 28(49), 16874-16880.

Nanomaterials & Adsorption Lab

WaltonGroup

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Zn-DMOF-N PXRD Before/After Water Exposure

Jasuja, H., K. S. Walton, et al. Langmuir, 2012, 28(49), 16874-16880.

Nanomaterials & Adsorption Lab

WaltonGroup

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

DMOF-TM2 Maintains Crystallinity and Surface Area

- After 3 cycles of adsorption/desorption of water vapor up to 90% RH
- Sample left in lab air for ~ 2 years
 - unchanged SA/PXRD

School of Chemical & Biomolecular Engineering

Is BDC or DABCO the Culprit?

Nanomaterials &

Adsorption Lab

WaltonGroup

- Studies have shown that DABCO leaves first when attacked by water
- The Zn-BDC layers remain
- The MOF reassembles when placed in DMF

Tan, K. et al., *Chemistry of Materials* 2012, 24. Chen, Z. et al, *Crystal Growth & Design* 2009, 9.

Nanomaterials & Adsorption Lab WaltonGroup Burtch, I Organic	Thermodynamic Stability Burtch, N. C., H. Jasuja, K. S. Walton, Water Stability and Adsorption in Metal- Organic Frameworks, <i>Chemical Reviews</i> , 2014, 114, 10575-10612.			
<u>Stability Mechanism</u>	Governing Structural Factors			
Unfavorable for irreversible hydrolysis reaction to occur under <i>any</i> water loading	<u>Inertness of Meta</u> <u>Metal-Ligand Bond Strength</u> Ligand effects •pKa of coordinating atom Metal effects •oxidation state •ionic radius	al Cluster Lability with Water Metal species •Reduction potential •Irving-Williams sequence •LUMO energetics Coordination geometry •Pauling rules		

Kinetic Stability

Burtch, N. C., H. Jasuja, K. S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks, *Chemical Reviews*, 2014, 114, 10575-10612.

Water *could* hydrolyze the bond, but...

Nanomaterials & Adsorption Lab

WaltonGroup

Not favorable because water molecules cannot cluster near metal site

Hydrophobicity

Water unable to adsorb in poresPore hydrophobicity

Water unable to cluster near metal

Internal hydrophobicity

Steric Factors

Water is able to approach metal sites, yet not favorable because of transition state energetics

<u>Around Metal Sites</u> Related to ease of water approach

- Coordination # of metal
- Structural transitions

<u>Around Labile Ligands</u> Related to ease of displacing ligand

- ligand 'packing' in structure
 - Interpenetration
 - Bulky functional groups

Classifying Water Stability

Burtch, N. C., H. Jasuja, K. S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks, *Chemical Reviews*, 2014, 114, 10575-10612.

Criteria for Water Stability Classification

thermodynamically stable	<pre>stable after long-term exposure to aqueous solutions: week or greater in pure water, day(s) in acidic/basic or boiling conditions strong potential for a wide range of applications</pre>
high kinetic stability	stable after exposure to high humidity conditions: decomposes after short exposure times in liquid water strong potential for industrial applications with high humidity conditions
low kinetic stability	stable under low humidity conditions potential for applications with predried gas conditions
unstable	quickly breaks down after any moisture exposure potential for applications under moisture-free conditions

Testing Conditions and Guidelines

Burtch, N. C., H. Jasuja, K. S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks, *Chemical Reviews*, 2014, 114, 10575-10612.

	APPLICATION	TESTING CONDITIONS	POST-CHARACTERIZATION
Gas or Vapor Phase			
One-Time Use	Single-Pass cartridge	Prolonged stability in ambient air	PXRD and BET
Multiple Use	Industrial Separations	Cyclic exposure to relevant mixture; regeneration via P or T swing	PXRD and BET; change in working capacity
	Gas Storage	Prolonged stability under relevant storage conditions	PXRD and BET
	Membrane or Thin films	Prolonged stability under application conditions	PXRD and BET; SEM, TEM, or other surface analysis
Aqueous Phase	Catalysis, liquid separations, trace metals	Immersion and stirring under aqueous conditions	PXRD, BET, solid phase mass loss after sample filtration

Acknowledgments

Jacob Neneff **Colton Moran** Frika Garcia-Gutierrez Karen Tulig Lalit Durante Julian Hungerford Michael Dutzer Dr. Chris Murdock **Nick Burtch** Dr. Cody Morelock Dr. Tim Duerinck William Mounfield Michael Mangarella Dr. Bogna Grabicka Yang Jiao

> Georgia Institute of Technology School of Chemical & Biomolecular Engineering