

Daniel W. Siderius, Vincent K. Shen, Russell D. Johnson III, Roger D. van Zee Chemical Informatics Research Group, Chemical Sciences Division

MATERIAL MEASUREMENT LABORATORY

Database Overview and Objectives

- 1. A "Data Informatics" complement to the NIST/ARPA-E FACT Laboratory
 - Database of adsorbent materials and their adsorption characteristics
 - NIST Standard Reference Data Product (avoid costly SRM)
- 2. External Guidance from "Data Task Force"
- 3. Draw data contents from existing scientific literature
- 4. On-line tools, including isotherm plotting and comparison, analysis tools (not yet)

NIST / ARPA-E Database of Novel and Emerging Adsorbent Materials

http://adsorbents.nist.gov

NIST SRD-205

Example Virtual Interlaboratory Studies: Direct comparison of isotherms harvested from literature

CO₂ Sorption by ZIF-8 @ 298K

N₂ Sorption by Zeolite 5A @ 303K

Note outlier isotherm for ZIF-8, inconsistency even for an industrial material like Zeolite 5A.

Demonstration – http://adsorbents.nist.gov

- 1. Site Geography and Search Fields
- 2. Example Searches:
 - a) Material: ZIF-8
 - b) Material: ZIF-8 and Gas: CO₂
 - c) Measurement Conditions (T range, P range, Type)
 - d) Bibliography
 - e) Progressive Search
 - f) Restrict to entries with associated isotherms
- 3. Isotherm Comparison (use "Demo Zeolite 5A / N2" or "Demo ZIF-8 / CO2")

- Database Statistics:
 - 2578 Papers
 - 19628 Adsorption Isotherms
 - 280 Adsorbates; 3906 Adsorbent Materials
- Pitfalls:
 - Lack of uniformity in MOF names
 - Inconsistencies in units (mmol/g, N/uc, etc.)
 - Thermodynamic Errors
- Opportunities for new Data Standards (break-out sessions?):
 - Isotherm reporting standards (IUPAC recommendations?)
 - JSON isotherm format (community standard...)
 - MOF / Adsorbent Index (catalog ID vs name?)
 - Database as a Adsorption Data Repository (direct submission with paper)
 - Direct data output from commercial instruments

Personnel and Acknowledgments

Russell D. Johnson, III

Vincent K. Shen

Data Task Force – Phil Barrett, Charles Coe, Karl Johnson, Alex Neimark, Peter Ravikovitch, Randy Snurr, Orhan Talu

Many thanks to past/present students and associates:

SURF: Jaime Santillan Mercado

SHIP: Emily Yang, Nicholas Kibbey, Alex Fairhall

MCI: Josh Hong

Guest Researchers: Qi Gan, Brittany Blunt

Objectives – An Adsorption Data Informatics Resource

- 1. As a complement to the NIST/ARPA-E Facility for Adsorbent Characterization and Testing, design and introduce a web-based database of adsorbent materials and the adsorption characteristics of those materials.
 - NIST Standard Reference Data Product (avoid costly SRM)
- The production database will be built on data drawn from the existing scientific literature and measurements from the FACT Laboratory. Jointly bibliographic and data-centric; includes article reference information and digitized adsorption isotherm data.
- 3. Production database allows for on-line plotting of adsorption isotherms, users may conduct "virtual interlaboratory studies" by comparison of results in the database. Plan to include data analytic tools.

NIST / ARPA-E Database of Novel and Emerging Adsorbent Materials

http://adsorbents.nist.gov

NIST SRD-205

Example Search

Search Categories (any or all)

Search via:

- 1. Adsorbent Material
- 2. Adsorbate Gas
- 3. Measurement Type
- Thermodynamic Conditions (Temperature / Pressure)
- 5. Bibliographic: Author/Journal/Title Keywords

Restrict Search to entries with associated isotherm

Progressive search – can add search constraints one by one

Example Search

Basic Search:

- 1. ZIF-8 Adsorbent (MOF)
- 2. Methane Adsorbate
- 3. List results with isotherm data

Results plotted from first result: Comparison of Adsorption Isotherms of CH₄, CO₂, and N₂ on ZIF-8 at 303K

- Current Database contains (as of 10/27/2014):
 - 2578 Papers (abstracted relevant adsorption metadata)
 - 19628 Adsorption Isotherms (digitization of graphical isotherms)
 - 280 Adsorbates (mostly gases, some liquids and metal ions)
 - 3906 Adsorbent Materials (MOFs, Carbon, Silicas, Zeolites, etc.)
- Uses JSON files to store/pass isotherm information (JavaScript Object Notation)
 - Human-readable file containing isotherm data points with explanatory metadata
 - Extensible format: includes mandatory metadata fields (material, gas, temperature, units, DOI reference) but allows for optional or user-defined fields
 - Broad use would facilitate isotherm data exchange
 - May be used by an in-development European database of isotherms
 - Add option to instruments for direct output to JSON?

Example Isotherm JSON File & Isotherm Plot

```
"DOI" : "10.1080/01496395.2010.513360",
"adsorbentMaterial" : "Zeolite 5A",
"adsorbateGas" : "CO2",
"temperature" : 303,
"adsorptionUnits" : "mmol/g",
"pressureUnits" : "bar",
"isotherm data" : [
 {"pressure": 0.0136807, "adsorption": 1.27692 },
 {"pressure": 0.03316, "adsorption" : 1.80576 },
 {"pressure": 0.0618991, "adsorption": 2.21498 },
 {"pressure": 0.0977185, "adsorption": 2.45468 },
 {"pressure": 0.144977, "adsorption": 2.62465 },
 {"pressure": 0.210349, "adsorption": 2.79477 },
 {"pressure": 0.341329, "adsorption": 2.99536 },
 {"pressure": 0.585515, "adsorption" : 3.19689 },
 {"pressure": 0.734828, "adsorption" : 3.26795 },
 {"pressure": 0.886422, "adsorption" : 3.32906 },
 {"pressure": 0.997296, "adsorption" : 3.36989 }
```


JSON: Extensible Data Format

Additional Data Fields

- 1. Institution / Laboratory
- 2. Date (month/day/year data was collected)
- 3. Gas Law (i.e. ideal or other, including relevant parameters)
- 4. Operator
- 5. Sample Holder (Why? " ... something I've found very important to track in previous jobs." "Tricky to have standard nomenclature for all instruments.")

Necessary for widespread use: Write a file specification

Pitfalls & Opportunities

- Major pitfalls encountered while gathering data:
 - Lack of uniformity in adsorbent names, particularly MOFs:
 - e.g., HKUST-1 (place-name), CuBTC (common name), Basolite® C300 (commercial), Copper (II) benzene-1,3,5-tricarboxylate (IUPAC)
 - e.g., $[Ru^{(II)}(bpy)_2(dcbpy)]CI_2$, $C_{26}H_{24}N_2O_4Zn$
 - Other synonyms in adsorbent list? (probably, but nary impossible to track down)
 - Inconsistencies in units: mmol/g (preferred), cm³(STP)/g (acceptable, but prone to errors), Molecules/Cavity (informative, but not useful for comparisons), Fractional Occupancy
 - Thermodynamic Errors: Reducing pressure by p^{sat} for T>T_c; Absolute vs. Excess
- Opens opportunities for new reporting standards:
 - Standard units for gas loading (and pressure? not necessary)
 - Require specification of isotherm type (excess vs. absolute)
 - Community could adopt JSON format as de facto standard format
- MOF Material Catalog: An index of MOFs for improved tracking and cross-referencing

- Future Goals:
 - Additional Data: 200 papers, 1200 isotherms/year
 - Include of data from FACT Lab analyses
 - Online data analysis of isotherm data: Fits to isotherm model, BET Surface Area

- Repository of data for Adsorption / Porous Materials User Community:
 - Users could directly submit data from published articles to be added to the NIST/ARPA-E Database. Procedure would require certain article metadata and annotated isotherm data.
 - Similar to publication requirements for crystallographic data (CIF).