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Today’s Objectives
 introduce mass transfer mechanisms in nanoporous

adsorbents
 provide impetus behind frequency response (FR) 

methods: mass transfer mechanism and rapid PSA
 discuss methods of measuring mass transfer rates
 describe a unique volumetric FR (VFR) method
 present VFR results from disparate adsorbate-

adsorbent pairs from very slow to very fast diffusing 

results from various techniques will be contrasted against each other





Mass Transfer Mechanisms in 
Porous Adsorbent

Leads to Inherent 
Resistances

Goal of Practical Adsorbent

.…concentrate a large amount of solid surface area in 
as small a volume as possible, and process as much gas 
as possible, while still satisfying process constraints….

powders, beads, pellets, extrudates, granules



Mass Transfer Mechanisms in Nanoporous Adsorbents

 adsorption-desorption kinetics depend on interplay between 
various rate processes 

 major rate processes

 film resistance
 macropore gas diffusion
 macropore Knudsen diffusion
 macropore surface diffusion
 macropore advection
 micropore pore mouth resistances
 micropore diffusion

 dominant mass transfer mechanism varies with system

Karger, and Ruthven, 1992.



Intraparticle Micropore Resistance  

Two Limiting Cases

constriction at intervals through the pore

constriction at pore entrance

concentration 
profile in the 

particle

typical of zeolites 
and other 

microporous 
adsorbents

typical of CMSs 
and other 

adsorbents with 
surface barrier





Which of the previous 
mass transfer mechanisms 

dominate, how do you 
find out, and do 

significant T, P and n
dependencies exist?



With respect to rapid PSA, 
what can be discovered 
from measuring mass 

transfer rates over a broad 
range of frequencies, easily 
up to 10 Hz and possibly up 

to 100 Hz?



• increase working capacity 10 fold (herculean)
• operate at 1/10th cycle time (achievable)
• known as rapid PSA
 issues with adsorbent attrition and pressure 

drop due to high velocities 

Notion of Rapid PSA
Is it possible to achieve a 1/10th volume reduction?

although rapid PSA offers potential for a low-cost 
solution for CO2 capture, the extent of size 

reduction achievable is, at the moment, unknown



QuestAir H-6200 RCPSA

Hydrogen Production
~ 12,000 Nm3/h/module



SeQual’s EclipseSeQual’s Eclipse



 93% medical grade O2
 0.5 to 3.0 LPM 

continuous O2
 18 lbs with battery

SeQual’s EclipseSeQual’s Eclipse

5-bed system





Mathematical 
Modeling and 

Process 
Simulation



Breadboard Test Setup

 series of experiments carried out under 
very controlled conditions

 parameters investigated included cycle 
speed, temperature, and pressure ratio



Cycle Time A
Run T

oC
Feed 
Flow 

(SLPM)

Tail Gas 
Flow 

(SLPM)

Product 
Flow 

(SLPM)

Product 
Purity

MTC s-1

kN2/kO2 = 
0.75

1 25 Experiment 23.1 19.0 3.58 91.3

kN2= 7.8

Prediction 23.1 19.5 3.58 91.3
2 25 Experiment 23.0 19.2 3.43 93.1

Prediction 23.1 19.7 3.43 92.7

3 25 Experiment 23.0 19.3 3.17 94.4
Prediction 23.1 20.0 3.18 94.4

Comparison of Experiment with Simulation

LDF mass transfer coefficient was the only fitting 
parameter; but, the mechanism was not determinable and the 

results were confusing!
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Ea =  7.2 kJ/mol
R2 = 0.9977
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1-Bed PSA System
Rapid Complex PSA Cycle Schedule Analysis

Experimental Setup

• breakthrough runs

• pure gas cycling

• PSA cycles (any 
possible combination 
of cycle steps)



CO2 Breakthrough Experiments
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Experiment Model

Experiment Model

30% CO2

70% He

Flow = 10 SLPM

Pressure = 25 psia

Temperature = 25oC

40% CO2

60% He

Flow = 10 SLPM

Pressure = 25 psia

Temperature = 25oC 

• mass transfer 
coefficient 
determination

• isotherm 
validation

• mechanism?

km = 0.3 s-1

13X zeolite beads



N2 Breakthrough Experiments

Experiment Model

Experiment Model

20% N2

80% He

Flow = 2.55 SLPM

Pressure = 25 psia

Temperature = 25oC
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13X zeolite beads

• mass transfer 
coefficient 
determination

• isotherm 
validation

• mechanism?



TGA Uptake and Release Experiments

• rapid adsorbent
characterization

• mass transfer 
coefficient 
determination?

• mechanism?



TGA Uptake and Release Experiments

15% CO2 in N2/100 % N2
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These rates are orders of 
magnitude slower than BT 

experiments, due to 
stagnant film diffusion!

13X zeolite beads



1-Bed Rapid PSA Apparatus 
Pressure Frequency Response (PFR) with Large Pressure Swings



Two-Step PFR Cycling Experiments

PH
↑ 
PL

PH
↓ 
PL

effluent

Countercurrent DepressurizationPressurization

pure feed gas

Information Obtained

a) valve Cv

b) excluded volume

c) adsorption/desorption mass transfer coefficients   



Experimental Conditions
• bed T = 25 °C

– feed P = 8, 20 psia
• bed T = 50 °C

– feed P =  8 psia
• bed T = 75 °C

– feed P =  8 psia

CO2
• bed T = 25 °C

– feed P = 2.4, 20, 40 psia
• bed T = 50 °C

– feed P =  20 psia
• bed T = 75 °C

– feed P =  20 psia

N2

runs carried out at half cycle times (i.e., ts) of
0.25, 0.5, 1.0, 2.0, 3.0 and 10 s

• bed T = 25 °C
– feed P = 20 psia

• bed T = 50 °C
– feed P =  20 psia

• bed T = 75 °C
– feed P =  20 psia

O2

• bed T = 25 °C
– feed P = 2.4, 20 psia

• bed T = 50 °C
– feed P =  20 psia

• bed T = 50 °C
– feed P =  20 psia

CH4
• bed T = 25 °C

– feed P = 2.4, 20 psia
• bed T = 50 °C

– feed P =  20 psia
• bed T = 50 °C

– feed P =  20 psia

Ar



ts = 2 sec 1 sec

0.5 sec 0.25 sec

Comparison of Experiment and Model Pressure Profiles
Ar @ 20 psia & 25 °C

kM = 43.24 s-1



Adsorbate Dp/Rp
2

s-1

CO2 7.45
CH4 5.63
N2 4.62
O2 2.78
Ar 2.41

Comparison of Mass Transfer Coefficients
CO2, N2, O2, CH4 and Ar on 13X Zeolite Beads

25 oC

Anticipated Order: CO2 > CH4 > N2 > O2 ~ Ar

Determined macropore
diffusion controlling, 
with the anticipated 

order and results making 
sense when considering 
a large contribution to 
the flux from surface 

diffusion.



Volumetric Frequency Response Apparatus (VFRA)

5x10-5 to 10 Hz 
100 g adsorbent



VFR Schematic
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FR Experimental Results
CO2 and CH4 in CMS Pellets

Comparison of very slow (CH4) to moderate fast (CO2) kinetics.



Mass Transfer Mechanism 
of O2 in CMS
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Fit of Experimental Data with Various Models 
Quantify and Identify Mass Transfer Mechanism
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Non-Isothermal Model
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Non-Isothermal Model
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Experiment vs Model
O2 in CMS Pellets at Different Temperatures
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T-Dependence of Mass Transfer Coefficients 
O2 in CMS Pellets 

k1= mass transfer coefficient        
of crystal 1

k2= mass transfer coefficient 
of crystal 2

km= mass transfer coefficient 
of mouth resistance
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20 0.335 0.009 0.130 0.751
30 0.458 0.013 0.161 0.782
40 0.737 0.019 0.129 0.751
50 1.110 0.045 0.213 0.783



Mass Transfer Mechanism of 
CO2 in 13X Zeolite



FR Experimental Results
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Model vs Experiment
one parameter optimized in each model to fit all three curves
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Mass Transfer Mechanism of N2
in 13X Zeolite
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Comparison of Mass Transfer Coefficients
N2 and CO2 on 13X Zeolite Beads at 25 oC

VFR 1-Bed RPSA 1-Bed BT TGA

CO2 3.3 7.5 0.3 ~ 0.01
N2 5.1 4.6 1.0 ---

k s-1

These seemingly small differences, in some cases, can 
make a significant difference in the process 

performance predicted from a PSA process simulator. 
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Extremely fast diffusion with phase lag peak >> 10 Hz!
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Extremely fast diffusion with phase lag peak >> 10 Hz!



Conclusions
 variety of techniques available for measuring mass transfer 

rates in nanoporous adsorbents; some simple, some not 
 mass transfer rates may very widely from different 

techniques; accurate values critical to PSA process modeling
 two FR techniques exhibited fastest mass transfer rates 

compared to other methods
 two FR techniques with relatively large and very small 

pressure swings resulted in similar mass transfer rates
 one FR technique also unambiguously identified the mass 

transfer mechanism, but required results at different Ts and Ps
 some adsorbate-adsorbent pairs surprisingly exhibited mass 

transfer rates far exceeding 10 Hz; how to measure and what 
does it infer?
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