Characterization of Gas Shales for Enhanced Natural Gas Recovery and Carbon Storage Applications

JENNIFER WILCOX, ERIK C. RUPP, RANDALL HOLMES, ALBERT LU ENERGY RESOURCES ENGINEERING, STANFORD UNIVERSITY

Workshop on Measurement Needs in the Adsorption Sciences Gaithersburg, Maryland November 5, 2014

Overview

Overarching Goal: characterize chemistry and morphology of shale to determine gas storage potential and mechanism of enhanced natural gas recovery through experiments and modeling

- Shale mineralogy
 - Shales are complex!
 - Role of kerogen versus clay
- Pore volume and pore size distribution
 - Outgassing procedure
 - Synthetic vs real shale samples
- High pressure and temperature isotherms indicative of realistic subsurface conditions
- Importance of realistic models
 - Adsorption isotherm simulations (storage) GCMC
 - Enhanced recovery properties (wettability) MD

Shale Deposits in the United States

Shale	Barnett	Haynesville	Fayetteville	Marcellus
Depth (m)	1950-2550	3150-4050	300-2100	1200-2550
T (°C)	68.5-86.5	104.5-131.5	19-73	46-86.5
P (MPa)	20-25	30-40	3-20	12-25

XRD Compositional Data(wt%)				
Component	Formula	Barnett	Eagle Ford	
Quartz	SiO ₂	38%	21.2%	
Feldspar	$KAISi_3O_8 - NaAISi_3O_8 - CaAl_2Si_2O_8$	3.8%	0%	
Calcite	CaCO ₃	0.9%	54.2%	
Pyrite	FeS ₂	1.8%	3.6%	
Clay	Illite	39%	15.8%	
тос		16%	4.97%	
			Stanford Unive	

Microscopic to Nano-scale

Clay in organic matter of Barnett shale

SEM images courtesy of Cindy Ross

Overview

Overarching Goal: characterize chemistry and morphology of shale to determine gas storage potential and mechanism of enhanced natural gas recovery through experiments and modeling

- Shale mineralogy
 - Shales are complex!
 - Role of kerogen versus clay
- Pore volume and pore size distribution
 - Outgassing procedure
 - Synthetic vs real shale samples
- High pressure and temperature isotherms indicative of realistic subsurface conditions
- Importance of realistic models
 - Adsorption isotherm simulations (storage) GCMC
 - Enhanced recovery properties (wettability) MD

Shale Samples

TGA Graphical Results

Netzsch STA 449 F3 Jupiter Simultaneous Thermal Analyzer and Differential Scanning Calorimeter

V = f(Outgas Temperature)

Increased temperatures during outgassing increase observed pore volume, primarily in micropores

Autosorb iQ₂ (Quantachrome) low-pressure gas sorption analyzer

Comparison Between CO₂ and N₂

Pore Size Distributions General Trend

Idealized Shales Kerogen <u><</u> 6%, Clay 30-50% Validation Shales TOC \leq 6.5%, Clay 41-55%

Stanford University

Model: QSDFT N₂-carbon slit-pore equilibrium model

QSDFT Pore Size Distributions

Overview

Overarching Goal: characterize chemistry and morphology of shale to determine gas storage potential and mechanism of enhanced natural gas recovery through experiments and modeling

- Shale mineralogy
 - Shales are complex!
 - Role of kerogen versus clay
- Pore volume and pore size distribution
 - Outgassing procedure
 - Synthetic vs real shale samples
- High pressure and temperature isotherms indicative of realistic subsurface conditions
- Importance of realistic models
 - Adsorption isotherm simulations (storage) GCMC
 - Enhanced recovery properties (wettability) MD

CO₂ and CH₄ Isotherms

CH₄ isotherm

Enhanced uptake of CO₂ over CH₄ at subsurface conditions, e.g., 80 $^{\circ}$ C

Rubotherm Magnetic Suspension Balance

Overview

Overarching Goal: characterize chemistry and morphology of shale to determine gas storage potential and mechanism of enhanced natural gas recovery through experiments and modeling

- Shale mineralogy
 - Shales are complex!
 - Role of kerogen versus clay
- Pore volume and pore size distribution
 - Outgassing procedure
 - Synthetic vs real shale samples
- High pressure and temperature isotherms indicative of realistic subsurface conditions
- Importance of accurate models
 - Adsorption isotherm simulations (storage) GCMC
 - Enhanced recovery properties (wettability) MD

Atomistic Models of Illite

D Geatches, J Wilcox, 2014, Eur. J. Mineral. (26), 127-144

XRD

Courtesty of Douglas McCarty, Chevron

Atomistic Models of Illite

D Geatches, D McCarty, J Wilcox, 2014, Am. Min., (99)1962-1972.

Measuring Wettability with Contact Angles

H₂O Wettability on Illite

MD simulation using LAMMPS package The surface dimension: 215Å x 190Å x 3 layers with 11154 H_2O Periodic boundary conditions are applied in x and y directions

Clay unit cell from Geatches, Wilcox, Eur. J. Mineral. 26 (2014) 127

Influence of Exchangeable Cations on the Wettability

 Surface properties of clay minerals, and the water film adsorbed on the surface, can be modified by introducing various exchangeable cations, which affect these properties by changing the hydration state of the surface

MD simulations of (a) water and (b) 0.75 M NaCl (c) 0.25 M CaCl₂ cylindrical droplet on *Al-1Mtv* illite surface. (in early simulation stage)

In Summary

- Shales are complex systems
 - Pore shape slit and cylindrical
 - Depends upon clay versus carbon content
 - Pore size micro and mesoporous
 - Pore chemistry clay and kerogen (carbon)
- Realistic models can lead to accurate estimates
 - Storage potential (CO₂)
 - Available natural gas more accurate estimates
 - Enhanced uptake using CO₂ displacement

