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Microbes as Chemical Factories
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Improvement of natural producers



Microbes as Chemical Factories

e Antibiotics/Antimicrobials

e Other therapeutics (lovastatin)
e Amino Acids

e Organic Acids

e 1,3-Propanediol Ho™ "o

(industrial chemical, materials)

e Artemisinic Acid

(anti-malarial precursor)

Re-constitution of natural pathways in heterologous hosts



Changing the paradigm* — from “CH,” to “CH,O”

Biomass
(Glucose & other simple sugars)
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Petroleum Refinery Bio- Refinery

Fuels Petrochemicals Bio-fuels Value added
Aviation Fuel Olefins and Aromatics for Ethanol, Butanol . .
Kerosene polymers, resins, adhesives,  branched chain alcohols Bio-chemicals
Gasoline detergents, fibers, lubricants
Fuel Oil

*Prof. Bradley D. Olsen, MIT Chemical Engineering



“Retro-biosynthetic” Pathway Design”

Integration of Biocatalysis (“Parts” selection) and Metabolic
Engineering (“Systems” assembly, analysis)

(Others) On-going work on algorithms for biosynthetic pathway
design

Elucidation of Design Principles

Development of Design and Assembly Tools (“Devices”)

* Curr. Opin. Biotechnol. 2008. 19:468-474



Candidates for Target Molecules
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Building Blocks

1,4-diacids (succinic, fumaric and malic)
2,5-furan dicarboxylic acid
3-hydroxypropionic acid
aspartic acid

Glucaric Acid
glutamic acid

itaconic acid
levulinic acid

3-Hydroxybutyrolactone

glycerol

sorbitol

xylitol/arabinitol

August 2004




Glucaric Acid

Found in fruits and vegetables, mammals
No known microbial pathway

Previously studied for cholesterol-reducing,
chemotherapeutic effects

Potential use as building block for polymeric
materials (nylons), detergents

Produced chemically through acid-catalyzed
oxidation of glucose



Novel pathway using naturally occurring
enzymes (Bioprospecting)
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Co-expression of 3 genes in E. coli
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Build-up of 1%t intermediate indicates a limitation with the 2" enzyme (MIOX)

Moon et al, 2009. Appl. Environ. Microbiol. 75(3):589-595



A closer look at MIOX...
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=>»High Ml production by 1%t enzyme (Ino1) is desired.

=» Easier said than done...

Moon et al, 2009. Appl. Environ. Microbiol. 75(3):589-595



Enzyme Co-localization
(Collaboration with Dr. John Dueber, SynBERC*)
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* QB3 Fellow, University of California, Berkeley, USA

Synthetic Biology Engineering Research Center (SynBERC)



Effect of Co-Recruitment on Enzyme Activity

Fixed enzyme induction level, variable scaffold induction levels
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Moon et al, 2010. Metabolic Engineering, 12, 298-305
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Manipulating Glucose Metabolism

Modulation of glucokinase (glk) may be used to redirect glucose and
increase pathway productivity with glucose as sole carbon source
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Glk Expression Library

Native
Glk
KTS022

Glk Expression
Family
KTSX22

Promoter part #: J231xx
Anderson Promoter Library, http://partsregistry.org



Glk Expression Library
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Glk activity measured during growth on glycerol to decouple from glycolysis
On glucose, growth rate varies with Glk activity

Solomon et al, 2013. ACS Synthetic Biology, 2:126-135.



Gluconate Productivity as a Function of Glk Activity

Target Compound:
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Reductions in Glk activity lead to increases in molar yield
but only when endogenous needs are met

Solomon et al, 2013. ACS Synthetic Biology, 2:126-135.



Inverters as a glucose valve
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Biological inverters show a dose dependent response

Solomon et al, 2012. Metabolic Engineering, 14:661-671.
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Inverter Effect on Productivity
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Effect of Timing of Induction
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Summary of Glucaric Acid Production

e Bioprospecting for Part Selection resulted
in identification of enzymes necessary to
create a novel pathway.

e Use of Synthetic Biology Devices led to
increases in productivity.

* Host engineering may provide a means to
further improve flux and titers.



3-Hydroxybutyrolactone (3-HBL)
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e Key Intermediate in Higher, Chiral . on : ?
Synthesis of Solvents (e.g. Furan .
Derivatives) and Pharmaceuticals  oH
(e_g_ Statins) 3,4-Dihydroxybutryic Acid HO

(DHBA) 3-Hydroxybutyrolactone
(3-HBL)

e Wholesale Cost ~ $450/kg
(520-50/gram for lab-scale
quantities)

e No Known Biological Routes
towards DHBA or 3-HBL.
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CIMany hydroxyacids have
been made as constituents of
intracellular PHAs (biopolymers).

CIVery few can be produced
economically as free monomers.

Steinblchel et al, FEMS Microbiol. Lett.,
1995, 128:219-228.



The 3-Hydroxybutyrate Pathway
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Enzyme Organism of Origin Properties Reference

bktB R. eutropha H16 Acetyltransferase, broad substrate range (C,-Cy) Slater, 1998
hbd C. acetobutylicum 824 Dehydrogenase, forms S stereoisomer product Boynton, 1996
phaA R. eutropha H16 Acetyltransferase, used in biopolymer synthesis Schubert, 1988
phaB R. eutropha H16 Dehydrogenase, forms R stereoisomer product Schubert, 1988
tesB E. coli K12 Thioesterase, Very broad substrate range (C,-C,;) Huisman, 1991
thil C. acetobutylicum 824 Acetyltransferase, high activity Stim-Herndon, 1995

Tseng et al, 2009. Appl. Environ. Microbiol. 75(10):3137-3145. >2 g/L R- or S- 3HB



3-Hydroxyvalerate Synthesis
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CoA-activation Enzymes
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Chiral 3HV Production

v'Activation of propionate is crucial

v'Activation mechanism determines the product distribution

(S)-isomer (R)-isomer
35
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[
1.5
l 3HB 1.0
[Jacetate
B 3HV 0.5
0.0
Activation Enzyme Pct Ptb-Buk None Pct Ptb-Buk None
3HV/3HB ratio 12.6 1.97 0.05 2.88 1.77 0.08

Tseng et al, 2010, Microbial Cell Factories. 9:96




From 3HB/3HV to DHBA?

3-hydroxybutyrate & 3-hydroxyvalerate biosynthetic pathway
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Production of 3,4-Dihydroxybutyrate (DHBA)
Glucose + Glycolate
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All cultures were E. coli MG1655(DE3) endA recA  grown in LB for 72 hours and were supplied with glycolate.
Martin et al, 2013. Nat. Commun. 4, 1414



Direct Synthesis of Glycolate, DHBA and 3-HBL from Glucose
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Effect of Glucose Concentration on DHBA

1.6 -
14 | m 8g/L Glucose
%‘o 19 - m 10g/L Glucose
Tc’ 1 - M 15g/L Glucose
@
-E 0.8 - Synthesis in minimal medium
B 0.6 supplemented with glucose
—haa Strain MG1655 (DE3)
o i
£ 0.4 0.29  0.28
02 - 0.16
0 - |
DHBA 3HBL
(3.4-
Molar Yield on |% of Theoretical DHBA]+[3HBL])
Glucose Feed .
Glucose Yield
[3HB]
0.8% 0.095 14.4 3.514
1.0% 0.141 21.3 2.557
1.5% 0.136 20.6 2.242




An Unexpected Product

2,2-D2-glycolic acid

3,4-DHBA (labelled) ammonium adduct
m/z = 140.1
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Extending the Hydroxyacid Pathway
e

(Carboxylic Acids]

CoA-activation

( 0O 0 0 => 0 i
\‘)}\OH /\)J\OH \)J\OH R)J\CoA )J\cm

Acyl-CoA Acetyl-CoA

| Isobutyric acid Butyric acid Propionic acid |

4-Methyl-3-Hydroxyvalerate 3-Hydroxyhexanate  3-Hydroxyvalerate 3-Hydroxybutyrate

T

~200 mg/L 4Me-(R)-3H4U mg/L (R)-3HH ~2 g/L (R)-3HV -3 g/L (R)-3HB
Martin et al, 2013. Nat. Commun. 4:1414 ~2 g/L (S)-3HV -2 g/L (5)-3HB
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Summary of Hydroxyacids Production

e Established a versatile platform for biological
synthesis of chiral hydroxyacids.

e Demonstrated 1% pathway for biological
production of 3-hydroxybutyrolactone from

simple (and sole) carbohydrate substrates.

e Reliance on promiscuity of enzymes results in wide
range of productivities for novel substrates.

— Bioprospecting and Protein Engineering
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