

### **Integrated Science**

Merging scientific disciplines to address global challenges

Douglas Muzyka, PhD

Senior Vice President and Chief Science & Technology Officer DuPont



### Key messages



- We are facing unprecedented global challenges in food, energy and protection.
- The chemical industry plays an important role in providing solutions.
- Ongoing success will require continued integration of science, diversification of ideas, and collaboration.



### Population growth will bring challenges

By 2050, the global population will grow by **2 billion people**:



Demand for food is projected to grow by 70%

Demand for energy is projected to rise by 40%

We must meet these demands while sustainably protecting people and the environment





### **Global energy use will continue to increase** Energy sources are expected to shift

Forecast of Worldwide Primary Energy Consumption by Fuel 2005-2040 700 2040 600 2010 14% 500 Coal quadrillion BTU per year 400 31% 40% Natural Gas 300 20% 18% 200 3% 36% Oil and other liquids **2** % 100 Nuclear 25% 11% **Renewables** 0 2005 2010 2020 2030 2040



### Shale gas will contribute...





Shale gas is projected to be the primary source of U.S. natural gas by 2040

\*Renewables including liquid biofuels Source: AEO2013 Early Release Overview, http://www.eia.gov/forecasts/aeo/er/early\_fuel.cfm (downloaded April 26, 2013)



### ...but will not fundamentally change challenges







# To address the challenge, the chemical industry must continue to evolve by integrating science, diversifying ideas and collaborating



### OPPIN.

## DuPont's approach: applying science to develop solutions to global challenges

- Science-based innovations will help make our consumption of valuable energy resources more efficient
- A more **reliable**, **increasingly clean energy supply** must be built on innovative technology applied to local conditions
- An energy solution is truly sustainable only when it is economically feasible as well as environmentally sound
- The development of viable clean energy technologies requires collaboration between scientists, and the policy, community and private sectors





### Our broad capabilities enable pathways for future growth





# Innovations in chemistry will continue to drive sustainable energy solutions

| Biofuels        | <ul> <li>Fermentation catalysts</li> <li>Replacement of oil-based products</li> </ul> |
|-----------------|---------------------------------------------------------------------------------------|
| Wind Energy     | Blade polymers                                                                        |
| Solar Energy    | <ul> <li>Photovoltaic materials</li> </ul>                                            |
| Energy Storage  | <ul> <li>Electrode materials</li> </ul>                                               |
| Light Weighting | <ul><li>Fiber technology</li><li>Polymers</li></ul>                                   |

We must continue to differentiate chemical offering



### **Advanced biofuels**





### Technology has driven a shift in feedstock cost

Cellulosic sugars can have a similar effect on energy sources



2012 Adjusted Oil, Sugar and Corn Prices\*

In 2012 CPI Adjusted Dollars.

Sources:

Oil: DOE EIA- used WTI Cushing, Assumed 300#/bbl (took ave of API weights)

Sugar: USDA ERS World Raw Sugar Price ICE, Contract 11, near by contracts.

Corn: USDA ERS Feed Grains Database, Yellow Dent Number 2, St. Louis MO, Jan. price for each year

CPI Adjust- Oregon State University



#### **DuPont cellulosic ethanol nearing commercialization**

#### Demonstration Facility: Vonore, TN (2009)



Feedstock

Milling &



Fermentation

Integrated science and engineering allows optimization of the entire process, leading to lower-cost, lower-capital production technology

**Saccharification** 

**Separation** 



#### Cellulosic ethanol project approach

Originated through a government collaboration









### **Photovoltaics** *Increased solar cell efficiency*



Solamet<sup>®</sup> photovoltaic metallization pastes have nearly doubled solar cell efficiency within the last 12 years

we're solving the world's greatest challenges

Together we can accomplish what no one can do alone.

### INNOVATION COLLABORATION INTEGRATION

